Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chau Kòi

Cho đẳng thức : \(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}+\frac{a^2+b^2-c^2}{2ab}=1\left(1\right)\)

Chứng minh rằng ba phân thức vế trái thì có 2 phân thức bằng +1 và một phân thức bằng -1.

Võ Đông Anh Tuấn
5 tháng 11 2016 lúc 11:02

Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)

Theo giả thiết : \(A+B+C=1\)

Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)

\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)

\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)

\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)

\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)

\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)

Có 3 khả năng xảy ra :

TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)

TH2 :

\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)

TH3:

\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)

\(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)

 


Các câu hỏi tương tự
Đặng Minh ĐỨC
Xem chi tiết
Thúy Diễm
Xem chi tiết
Phú Nguyễn
Xem chi tiết
Quốc Bảo
Xem chi tiết
Mai Thị Huyền My
Xem chi tiết
Neet
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết