tìm m để phương trình x2 -2x= 1-m -|x-1| có nghiệm duy nhất
Cho phương trình: mx² - 2x + m - 1 = 0 Tìm m để phương trình có nghiệm duy nhất Tìm m để phương trình có 2 nghiệm phân biệt Tìm m để phương trình có hai nghiệm x1,x2 thoả 3x1x2 - 2x1 - 2x2 = -2 Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
Bài 7. Cho phương trình bậc hai: x2 + 2(m+1)x + m2 - 3m = 0
a. Tìm m để phương trình có nghiệm bằng -1 .
b. Tìm m để phương trình có hai nghiệm phân biệt.
c. Tìm m để phương trình có nghiệm duy nhất
\(a,x=-1\\ \Leftrightarrow1-2\left(m+1\right)+m^2-3m=0\\ \Leftrightarrow-1-5m+m^2=0\\ \Leftrightarrow m^2-5m-1=0\\ \Delta=25+4=29\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)
\(b,\)Pt có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+12m>0\\ \Leftrightarrow20m+4>0\Leftrightarrow m>-\dfrac{1}{5}\)
\(c,\)Để pt có nghiệm duy nhất (nghiệm kép)
\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)=0\\ \Leftrightarrow20m+4=0\\ \Leftrightarrow m=-\dfrac{1}{5}\)
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
Cho phương trình m2 x+6(x +1 ) =m(5x + 3) (m là tham số) (1). Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A= x2 + 2x + 3/x2 + 2 đạt giá trị nhỏ nhất
giúp e với ạ mai thi rồi cảm ơn !!!
Cho phương trình m(x-4)-2x=4(1-m) (với m là tham số)
a) Giải phương trình với m=0, m=-1, m=-3
b)Tìm m để phương trình vô nghiệm
c)Tìm m để phương trình có vô số nghiệm
d)Tìm m để phương trình có nghiệm dương duy nhất
e)Tìm m để phương trình có nghiệm duy nhât nhỏ hơn 1
Cho phương trình : ( 2- m )x+3 = m (1)
A, Tìm m để phương trình (1) có 1 nghiệm duy nhất. Tìm nghiệm duy nhất đó.
B, Tìm m để phương trình (1) có nghiệm duy nhất dương.
C, Tìm m thuộc Z để phương trình (1) có nghiệm x thuộc Z
Giúp mk vs ạ!
Cho phương trình : ( 2- m )x+3 = m (1)
A, Tìm m để phương trình (1) có 1 nghiệm duy nhất. Tìm nghiệm duy nhất đó.
B, Tìm m để phương trình (1) có nghiệm duy nhất dương.
C, Tìm m thuộc Z để phương trình (1) có nghiệm x thuộc Z
Giúp mk vs ạ!
Câu 3 : (2 điểm ) Cho phương trình ẩn x : x2 – 5x + m – 2 = 0 (1) Tìm m để phương trình (1) có 1 nghiệm duy nhất Giải phương trình (1) khi m = 4
ý 1: Để pt (1) có 1 nghiệm duy nhất thì \(\Delta=0\)
\(\Delta=\left(-5\right)^2-4m+8=-4m+33\)
\(\Rightarrow33-4m=0\Rightarrow m=\dfrac{33}{4}\)
ý 2: Khi \(m=4\Rightarrow x^2-5x+2=0\)
\(\Delta=\left(-5\right)^2-8=17\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)
Vậy...
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Cho phương trình : ( 2- m )x+3 = m (1)
A, Tìm m để phương trình (1) có 1 nghiệm duy nhất. Tìm nghiệm duy nhất đó.
B, Tìm m để phương trình (1) có nghiệm duy nhất dương.
C, Tìm m thuộc Z để phương trình (1) có nghiệm x thuộc Z
Giúp mk vs ạ!!!