Cho x,y là hai số thực dương. Tìm GTNN của P = \(\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
Cho x, y là hai số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
Với x, y thực dương áp dụng BĐT Cauchy ta có:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)
\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)
\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)
Vậy Pmin = 10 tại x = y.
áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)
x2+y2\(\supseteq\)2xy
nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10
dấu = xảy ra\(\Leftrightarrow\)x=y
Cho x, y là hai số thực dương thoả mãn x + y = 1. Tìm GTNN của P = \(\frac{18}{x^2+y^2}+\frac{13}{xy}\)
Ta có:
\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)
\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)
\(=18.4+4.4=72+16=88\)
Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho các số thực a,y dương. Tìm GTNN của:
A=\(\sqrt{\frac{x^2}{y^2}+\frac{y^2}{x^2}+2}+\frac{\sqrt{xy}}{x+y}\)
\(A=\sqrt{\left(\frac{x}{y}+\frac{y}{x}\right)^2}+\frac{\sqrt{xy}}{x+y}=\frac{x}{y}+\frac{y}{x}+\frac{\sqrt{xy}}{x+y}=\frac{x^2+y^2}{xy}+\frac{\sqrt{xy}}{x+y}\ge\frac{\left(x+y\right)^2}{2xy}+\frac{\sqrt{xy}}{x+y}\)
\(A\ge\frac{\left(x+y\right)^2}{16xy}+\frac{\sqrt{xy}}{2\left(x+y\right)}+\frac{\sqrt{xy}}{2\left(x+y\right)}+\frac{7\left(x+y\right)^2}{16xy}\)
\(A\ge3\sqrt[3]{\frac{\left(x+y\right)^2.xy}{16xy.4\left(x+y\right)}}+\frac{7\left(x+y\right)^2}{\frac{16.\left(x+y\right)^2}{4}}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(x=y\)
Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy.\)
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
vừa lên lớp 8 đã bị hack não rồi k bt có học đc k đây
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)
Cho các số thực x ; y thỏa mãn \(\left(x+y-1\right)^2=xy\)
Tìm GTNN của biểu thức \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho các số thực x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức
P= \(\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho x,y,z là 3 số thực dương. Tìm GTLN của biểu thức :
P= \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)
Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1
Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1
Dự đoán MaxP = 1 khi c = t = k = 1
Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z
Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)
CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)
\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)
Từ (1), (2) và (3) cộng vế theo vế ta có:
\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)
=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)
Dấu "=" xảy ra <=> x = y = z
Vậy MaxP = 1 <=> x = y = z
một bài khá hay :)
Ta có \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=1-\frac{x}{x+2\sqrt{yz}}\le1-\frac{x}{x+y+z}\left(1\right)\)
Tương tự \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}=1-\frac{y}{y+2\sqrt{xz}}\le1-\frac{y}{x+y+z}\left(2\right)\)
\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}=1-\frac{z}{z+2\sqrt{xy}}\le1-\frac{z}{x+y+z}\left(3\right)\)
Cộng (1);(2);(3)
\(2P\le3-\frac{x+y+z}{x+y+z}=2\Rightarrow P\le1\)
Vậy \(minP=1\)Khi và chỉ khi \(x=y=z\)
Cho x;y là hai số dương .Tìm GTNN của biểu thức \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)
Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)
Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)
Dấu "=" xảy ra <=> x=y
Vậy MinS=6 đạt được khi x=y
Ta có:
\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)
Dấu "=" xảy ra <=> x = y
Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.