32 . 3n = 4
4^n.2^3n(n nằm ở dưới ko phải số mũ)=32
1/3+2/32+3/33+4/34+...+n/3n<3/4 tìm n biết(n thuộc n*,n>3
Cho dãy số ( u n ) với u n = 1 + 2 + 3 + 4 + . . . + n ( 1 + 3 + 3 2 + 3 3 + . . . + 3 n ) . n + 1 . Tính l i m u n
A. 0
B. 2
C. 1 3
D. 1
* Xét tử số: Ta thấy 1, 2, 3, 4, ..., n là một dãy số thuộc cấp số cộng có n số hạng với
u 1 = 1 ; d= 1 .
Tổng n số hạng của cấp số cộng: S n = u 1 + u n n 2 = 1 + n n 2 .
* Xét mẫu số: Ta thấy 1 , 3 , 3 2 , 3 3 , ... , 3 n là một dãy số thuộc cấp số nhân có n + 1 số hạng với u 1 = 1 ; q = 3
Tổng (n+ 1) số hạng của cấp số nhân: S n + 1 = u 1 . 1 − q n + 1 1 − q = 1 − 3 n + 1 1 − 3 = 3 n + 1 − 1 2 .
⇒ u n = n 3 n + 1 − 1 = n 3.3 n − 1
Bằng quy nạp ta luôn có n < 2 n , ∀ n ∈ ℕ * và 3 n > 1 , ∀ n ∈ ℕ *
⇒ u n = n 3.3 n − 1 < n 3 n < 2 n 3 n = 2 3 n
Vì lim 2 3 n = 0 nên lim u n = 0.
Chọn đáp án A
14\(\le\)3n+2<32
3n-7<14
viết tập hợp A các số tự nhiên n,biết rằng
14<3n+2<32
Vì 14 < 3n + 2 < 32 .
⇒ 3n + 2 = 15 ; 16 ; 17 ; ... ; 31 .
⇒ 3n = 15 ; 21 ; 24 ; 27 .
⇒ n = 5 ; 7 ; 8 ; 9 .
Vậy n = 5 ; 7 ; 8 ; 9 .
choA=31+32+33+...32015.Tìm n biết 2A+3=3n
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
Tìm n ∈ ℤ sao cho: 3n - 32 là bội số của n - 8
Để 3n - 32 là bội số của n - 8 thì \(3n-32⋮n-8\)
\(3n-32=3n-24-8=3\left(n-8\right)-8\)
Mà \(3\left(n-8\right)⋮n-8\)
\(\Rightarrow-8⋮n-8\\ \Rightarrow n-8\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\\ \Rightarrow n\in\left\{9;7;10;6;12;4;16;0\right\}\)
Vậy \(n\in\left\{9;7;10;6;12;4;16;0\right\}\) để 3n - 32 là bội số của n - 8
Ta có: \(3n-32⋮n-8\)
\(\Leftrightarrow3n-24-8⋮n-8\)
mà \(3n-24⋮n-8\)
nên \(-8⋮n-8\)
\(\Leftrightarrow n-8\inƯ\left(-8\right)\)
\(\Leftrightarrow n-8\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{9;7;10;6;12;4;16;0\right\}\)
Vậy: \(n\in\left\{9;7;10;6;12;4;16;0\right\}\)
B= 31+ 32+ 33+ ……+ 3100
Tìm số tự nhiên n, biết 2B+3= 3n
B = 31 + 32 + 33 +...+ 3100
3B = 32 + 33 + ...+ 3100 + 3101
3B - B = 3101 - 3
2B = 3101 - 3
2B + 3 = 3n
⇒ 3101 - 3 + 3= 3n
3n = 3101
n = 101
Kết luận n = 101
cho A =3+32 +33+....+3100
Tìm số tự nhiên n , biết rằng 2A + 3 = 3n
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Cho A = 3 + 3 2 + 3 3 + . . . + 3 100 . Tìm số tự nhiên n biết rằng 2A+3= 3 n
A. n=99
B. n=100
C. n=101
D. n=102