gpt
\(4\sqrt{x+4}+\sqrt{16-3x}=x^2+4x+12\)
giải pt : \(x^2-4x+12=4\sqrt{4-x}+\sqrt{3x+16}\)
ĐKXĐ: \(-\frac{16}{3}\le x\le4\)
\(\Leftrightarrow3x^2-12x+36=12\sqrt{4-x}+3\sqrt{3x+16}\)
\(\Leftrightarrow3x^2-9x+4\left(6-x-3\sqrt{4-x}\right)+\left(x+12-3\sqrt{3x+16}\right)=0\)
\(\Leftrightarrow3\left(x^2-3x\right)+\frac{4\left(x^2-3x\right)}{6-x+3\sqrt{4-x}}+\frac{x^2-3x}{x+12+3\sqrt{3x+16}}=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(3+\frac{4}{6-x+3\sqrt{4-x}}+\frac{1}{x+12+3\sqrt{3x+16}}\right)=0\)
\(\Leftrightarrow x^2-3x=0\)
GPT: \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
GPT: \(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)
ĐLXĐ:\(x\ge-1\)
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)
\(\Leftrightarrow\left[\sqrt{x^2+4x+12}-\left(6-3x\right)\right]-\left[\sqrt{x+1}-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\frac{x^2+4x+12-36+36x-9x^2}{\sqrt{x^2+4x+12}+2-3x}-\frac{x+1-x^2+4x-4}{\sqrt{x+1}+x+2}=0\)
\(\Leftrightarrow\frac{-8x^2+40x-24}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)
\(\Leftrightarrow\frac{8\left(-x^2+5x-3\right)}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)
\(\Leftrightarrow\left(-x^2+5x-3\right)\left[\frac{8}{\sqrt{x^2+4x+12}+2-3x}-\frac{1}{\sqrt{x+1}+x-2}\right]=0\)
TH1:\(-x^2+5x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
TH2:........ ( chắc vô nghiệm )
phần mẫu phải là \(\sqrt{x^2+4x+12}+6-3x\) chứ :vv Hơi lỗi nhưng cảm ơn nhé !!
\(x^2+4x+12=\left(x+1\right)^2+2\left(x+1\right)+9\)
Đặt \(\sqrt{x+1}=a\ge0\).
PT \(\Leftrightarrow\sqrt{a^4+2a^2+9}=2a^2+a-6\)
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
Gpt:
\(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)\(\sqrt{-x^2+3x+4}+\sqrt{-y^2+2y+2}=\sqrt{-x^2+5x+14}\)\(\sqrt{x^2+8}-\sqrt{x^2+3}=\frac{1}{2}\left(3x-1\right)\)Bài quá dễ tự làm đi
k mình mình giải cho
Bạn nói dễ mà bạn không chịu làm thì bạn nói làm gì ???
Giải phương trình sau bằng pp sử dụng biểu thức liên hợp:
\(x^2-4x+12=4\sqrt{4-x}+\sqrt{3x+16}\)
GPT :\(\sqrt{x^2-3x+2}\) +\(\sqrt{x^2-4x+3}\) =\(2\sqrt{x^2-5x+4}\)
mk cx toán nek
câu này cx bình thường, bn cố nhìn ik , ra ngay thôi, mk mún bn tự suy nghĩ tư duy
Gpt:
\(3\sqrt{2}-5\sqrt{8x}+\sqrt{18x}=28\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}=16\sqrt{x+1}\)
b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)
gpt:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)
mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\), \(\sqrt{5\left(x^2-1\right)^2+4}\ge4\), \(2\left(x+1\right)^2\ge0\)với mọi x
=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)
'=" xảy ra<=> x+1=0<=> x=-1