Giai phuong trinh:
\(28+\sqrt[3]{x^2}=3x+2\sqrt[3]{x}+\left(x-4\right)\sqrt{x-7}\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
Giai phuong trinh va he phuong trinh:
a) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
b) \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
c) \(\left\{{}\begin{matrix}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{matrix}\right.\)
giai phuong trinh
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow x^2-4x+4-x^2+4=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{x-2}=b;\) ta có:
\(2a^2-b^2=ab\) ⇔ \(2a^2-ab-b^2=0\)
\(\Leftrightarrow2a^2+ab-2ab-b^2=0\)
⇔ \(\left(2a+b\right)\left(a-b\right)=0\)
⇔ \(\left[{}\begin{matrix}2\sqrt[3]{x+2}=-\sqrt[3]{x-2}\\\sqrt[3]{x-2}=\sqrt[3]{x+2}\end{matrix}\right.\)⇔ \(x=-\frac{14}{9}\)
Giai phuong trinh : \(\left(x+5\right)\sqrt{\left(x+1\right)+1}=\sqrt[3]{\left(3x+4\right)}\)
lớp 7 sao mà đã học căn thức ak bạn.có lớp 8 thì đc
giai phuong trinh \(\sqrt{x\left(x-3\right)}-\sqrt{7x-3}=2\sqrt{x^2}\)
giai phuong trinh ;\(7+2\sqrt{x}-x=\left(2+\sqrt{x}\right)\sqrt{7-x}\)
ĐKXĐ: \(0\le x\le7;x\in R\)
Phương trình cho tương đương: \(2\sqrt{x}+\left(7-x\right)=\left(2+\sqrt{x}\right)\sqrt{7-x}\)
Đặt \(\sqrt{x}=a,\sqrt{7-x}=b\) với \(a,b\ge0\). Khi đó ta có phương trình:
\(2a+b^2=\left(2+a\right)b\Leftrightarrow b^2-2b+2a-ab=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-a\right)=0\). Đến đây thì dễ rồi :)
Giai phuong trinh giup minh 3 cau nay voi
a,\(3x\left(2-\sqrt{4}\right)=3\left(\sqrt{4}x+1\right)\)
b,\(\left(5-x\right).\left(\sqrt{3}+x\right)-5=0.\)
c,\(\left(x^2-2x\right)+\left(-4+8x\right)=0.\)
Giai phuong trinh
\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
sáng sớm lang thang lật lại mấy trang gặp bài này, xin trình bày vài cách:
Đk:\(x\ge2\) \(\left(DK\forall PP\right)\)
C1 \(pt\Leftrightarrow x^3-3x\left(x+2\right)-2\sqrt{\left(x+2\right)^3}=0\)
Đặt \(t=\sqrt{x+2}\) ra pt đăng cấp bậc 3...
c2:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2=\left(3\left(x+1\right)\right)^2\)
c3:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}-3x-2\right)\left(3x+\sqrt{\left(x+2\right)^3+4}\right)=0\)
C4:Chia 2 vế x3 dc:
\(1-\frac{3}{x}\pm2\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}-\frac{6}{x^2}=0\)
đặt \(\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}=t\) dc \(1\pm3t^2+2t^3=0\)
Ngoài ra còn có thể liên hợp ,.....
Giai phuong trinh:
a) \(\sqrt{x^2+6}=x-2.\sqrt{x^2-1}\)
b) \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
b/ Đặt \(\sqrt{x^2+1}=a\ge0\)
\(\Rightarrow a^2+3x=\left(x+3\right)a\)
\(\Leftrightarrow\left(3-a\right)\left(x-a\right)=0\)
a/ Dựa vô TXĐ thì thấy \(x< 2\)
\(\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0\)
Vậy vô nghiệm
alibaba nguyễn
b/ Đặt \sqrt{x^2+1}=a\ge0x2+1=a≥0
\Rightarrow a^2+3x=\left(x+3\right)a⇒a2+3x=(x+3)a
\Leftrightarrow\left(3-a\right)\left(x-a\right)=0⇔(3−a)(x−a)=0
a/ Dựa vô TXĐ thì thấy x< 2x<2
\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0⇒x2+6+2x2−1−x>6−2>0
Vậy vô nghiệm