Cho hình thang cân ABCD ( AB // CD ) . Gọi O là giao điểm của AC và BD ; E là giao điểm của AD và BC .
a ) Chứng minh : Tam giác OCD cân
b ) Chứng minh : EO là đường trung trực của : AB ; CD
Bài 1: Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia
phân giác của BC · D
Bài 2: Cho hình thang cân ABCD (AB // CD, AB < CD ). Gọi O là giao điểm của AD
và BC; Gọi E là giao điểm của AC và BD. Chứng minh:
a) Tam giác AOB cân tại O;
b) Các tam giác ABD và BAC bằng nhau;
c) EC = ED;
d) OE là trung trực chung của AB và CD.
Bài 3: Cho hình thang cân ABCD (AB // CD) có µ A C 2µ. Tính các góc của hình thang cân
Bài 4: Cho hình thang cân ABCD (AB//CD) có đường chéo BD vuông góc với cạnh bên
BC và đồng thời DB là tia phân giác của ADC.
a) Tính các góc của hình thang cân ABCD.
b) Biết BC = 6 cm, tính chu vi và diện tích của hình thang cân ABCD.
Cho hình thang cân ABCD (AB//CD) . Gọi O là giao điểm của AC và BD . C/m rằng OC = OD , OA = OB
Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ODC}=\widehat{OCD}\)
hay OC=OD
Cho hình thang cân ABCD (AB//CD) có góc BDC= 45 độ. Gọi O là giao điểm của AC và BD:
a. Chứng minh tam giác DOC vuông cân
b. Tính diện tích hình thang ABCD, biết BD=6cm
cho hình thang cân ABCD có ab//cd và ab<cd. kẻ đường cao ah và bk. gọi O là giao điểm của ac và bd; i là giao điểm ad và bc. Chứng minh OI là trung trực AB.
Cho hình thang cân ABCD (AB // CD) có . Gọi O là giao điểm của AC và BD.
a) Chứng minh tam giác DOC vuông cân.
b) Tính diện tích của hình thang ABCD, biết BD = 6 (cm).
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔCOD cân tại O
Cho hình thang cân ABCD có AB // CD và AB < CD. Kẻ đường cao AH, BK của hình thang ABCD (H, K thuộc CD).
1) Chứng minh tam giác ADH bằng tam giác BCK.
2) Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3) Giả sử BK=AB+CD/2. Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Tham khảo a làm rồi nha: https://hoc24.vn/cau-hoi/.1904701261424
Cho hình thang cân ABCD (AB//CD, AB<CD), O là giao điểm của AC và BD, I là giao điểm của AD và BC
a)Chứng minh OA=OB, OC=OD
b)Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh I, M, O, N thẳng hàng
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
cho hình thang cân ABCD có AB ?? CD và AB < CD . Gọi O là giao điểm của AD và BC . E là giao điểm của AC và BD . CM
A) tam giác AOB cân tại O
B) tam giác ABD = tam giác BAC
C) EC = ED
D) OE là trung trực của hai đáy AB và CD