Gọi G,H,O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC
D đối xứng với A qua O . Chứng minh: BHCD là hình bình hành
Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi G,H lần lượt là trọng tâm, trực tâm của tam giác ABC, D là điểm đối xứng với B qua O. a. Chứng minh AHCD là hình bình hành. Suy ra \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO}\). b. Chứng minh: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\). Suy ra O,G,H thẳng hàng. Giúp mình với ạ
Helppppppppp
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. D là điểm đối xứng với A qua O.
CM: BHCD là hình bình hành.
Cho tam ABC nội tiếp đường tròn tâm O . Gọi H là trực tâm của tam giác ABC và lấy B' là điểm đối xứng với B qua tâm O . Chứng minh tứ giác AHCB' là hình bình hành
giải: ta có:BB' là đường kính nên trong tam giác BB'C có góc C là góc vuông,tương tự góc A cũng vuông
ta lại có AH và B'C cùng vuông góc với BC
CH và B'A cùng vuông góc với AB
=>AHCB' là hình bình hành
cái này mjk giải ngắn gọn bn tự thêm vài câu lý luận vào nha ^^
Cho tam giác ABC có 3 góc nhọn và H là trực tâm. Vẽ hình bình hành BHCD. Đường thẳng đi qua D song song với BC cắt AH tại E
1, chứng minh A,B,C,D,E cùng thuộc 1 đường tròn
2, chứng minh tam giác BAE= tam giác DAC
3, Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC, đường thẳng AM cắt OH tại G. Chứng minh G là trọng tâm của tam giác ABC
4, giả sử OD=a. Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a
HELP ME
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD
OMG!!!!!!!!!!!!!!
em lên mạng hỏi à
lạy baba
Cho tam giác ABC nhọn, có H là trực tâm, nội tiếp đường tròn tâm O đường kính AM = 2R
a, Chứng minh tứ giác BHCM là hình bình hành
b, Gọi N là điểm đối xứng của M qua AB. Chứng minh tứ giác AHBN nội tiếp được trong một đường tròn
c, Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N, H, E thẳng hàng
d, Giả sử AB = R 3 . Tính diện tích phần chung của đường tròn (O) và đường tròn ngoại tiếp tứ giác AHBN
a, BH ^ AC và CM ^ AC Þ BH//CM
Tương tự => CH//BM
=> BHCM là hình bình hành
b, Chứng minh BNHC là hình bình hành
=> NH//BC
=> AH ^ NH => A H M ^ = 90 0
Mà A B N ^ = 90 0 => Tứ giác AHBN nội tiếp
c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng
d, A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN
AN = AM = 2R, AB = R 3 => A m B ⏜ = 120 0
S A O B = 1 2 S A B M = R 2 3 4
S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3
=> S cần tìm = 2 S A m B ⏜ = R 2 6 4 π - 3 3
Cho tam giác ABC nhọn có trực tâm H. Vẽ hình bình hành BHCD. Đường thẳng qua D và song song với BC cắt AH tại E.
a) C/m:A,B,C,D,E cùng thuộc một đường tròn.
b) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. C/m: tam giác BAE = tam giác OAC bà BE=CD.
c) Gọi M là trung điểm BC, đường thẳng AM cắt OH tại. C/m: G là trọng tâm tam giác ABC.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và trực tâm H. Kẻ đường kính AD.
a/ Chứng minh tứ giác BHCD là hình bình hành
B/ Gọi I lầ trung điểm BC. Chứng minh: AH = 2OI
C/ Chứng minh: O,B là trọng tâm G của tam giác ABC là ba điểm thẳng hàng.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD vuông góc AB
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC vuông góc CD
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔHDA có
I,O lần lượt là trung điểm của DH,DA
=>IO là đường trung bình
=>IO//AH và IO=AH/2
=>AH=2IO
Cho tam giác ABC nhọn có trực tâm H. Vẽ hình bình hành BHCD. Đường thẳng qua D
và song song với BC cắt AH tại E.
a) C/m:A,B,C,D,E cùng thuộc một đường tròn.
b) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. C/m: tam giác BAE = tam giác
OAC bà BE=CD.
c) Gọi M là trung điểm BC, đường thẳng AM cắt OH tại. C/m: G là trọng tâm tam giácabc