Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LuKenz
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 16:47

Xét \(\sqrt{2}.A=\sqrt{\dfrac{4+2\sqrt{3}}{2}}-\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)

\(\sqrt{\dfrac{\left(1+\sqrt{3}\right)^2}{2}}-\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{2}}\)

\(\dfrac{1+\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}\)

<=> A = 1

Duong Thi Minh
Xem chi tiết
Nguyễn Thị Thanh Trúc
24 tháng 6 2017 lúc 15:38

HÌNH NHƯ BẰNG 1,414213562

tịch thiên du phong
24 tháng 6 2017 lúc 15:44

A=\(\sqrt{2}\), cái kết quả này bấm máy tính là ra được, quan trọng là phải làm thế nào để ra

Đặng Thanh Thủy
24 tháng 6 2017 lúc 15:56

Đặt \(x=2+\sqrt{3};y=2-\sqrt{3}\), ta có

\(A=\frac{x}{\sqrt{2}+\sqrt{x}}+\frac{y}{\sqrt{2}-\sqrt{y}}=\frac{x\left(\sqrt{2}-\sqrt{y}\right)+y\left(\sqrt{2}+\sqrt{x}\right)}{\left(\sqrt{2}+\sqrt{x}\right)\left(\sqrt{2}-\sqrt{y}\right)}\)

\(=\frac{\sqrt{2}\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{2+\sqrt{2}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{xy}}\)

Có  # \(x+y=2+\sqrt{3}+2-\sqrt{3}=4\)

     ## \(xy=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=4-3=1\)

    ### \(\sqrt{x}-\sqrt{y}=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

        \(=\frac{\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{1+\sqrt{3}-\sqrt{3}+1}{\sqrt{2}}=\sqrt{2}\)

Vậy kết luận \(A=\frac{\sqrt{2}.4-\sqrt{2}}{2+\sqrt{2}.\sqrt{2}-1}=\frac{3\sqrt{2}}{3}=\sqrt{2}\)

                                                  Ký tên bài giải: ĐẶNG ĐỨC TRƯỜNG 

WonMaengGun
Xem chi tiết
HT.Phong (9A5)
23 tháng 8 2023 lúc 5:49

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

HaNa
23 tháng 8 2023 lúc 5:48

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)

Nguyễn Ngọc Linh Nhi
Xem chi tiết
Hoàng Lê Bảo Ngọc
7 tháng 10 2016 lúc 20:06

\(A=\frac{\sqrt{3}-1}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{\sqrt{3}-1}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)

\(=\frac{\sqrt{3}-1}{1+\frac{\sqrt{4+2\sqrt{3}}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{4-2\sqrt{3}}}{2}}=\frac{\sqrt{3}-1}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)

\(=\frac{\sqrt{3}-1}{\frac{3+\sqrt{3}}{2}}+\frac{\sqrt{3}+1}{\frac{3-\sqrt{3}}{2}}=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{2\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)

\(=\frac{2}{\sqrt{3}}\left(\frac{4-2\sqrt{3}+4+2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)=\frac{2}{\sqrt{3}}.\frac{8}{2}=\frac{8}{\sqrt{3}}=\frac{8\sqrt{3}}{3}\)

Duc nguyen tri
Xem chi tiết
nguyên công quyên
Xem chi tiết
Phan Nghĩa
13 tháng 5 2021 lúc 20:17

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

Khách vãng lai đã xóa
Phan Nghĩa
14 tháng 5 2021 lúc 20:21

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

Khách vãng lai đã xóa
Kim Ahn
Xem chi tiết
đỗ phương anh
Xem chi tiết
Nguyên Miou
Xem chi tiết
Nguyễn Xuân Anh
12 tháng 10 2018 lúc 21:46

\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right).\)

\(=\frac{2\sqrt{2-\sqrt{3}}}{4}:\left(\frac{2\sqrt{2+\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{2\sqrt{2+\sqrt{3}}}{4\sqrt{3}}\right)\)

\(=\frac{\sqrt{4-2\sqrt{3}}}{4}:\left(\frac{\sqrt{4+2\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{4\sqrt{3}}\right)\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{4}:\left[\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4\sqrt{3}}\right]\)

\(=\frac{\sqrt{3}-1}{4}:\left[\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{4\sqrt{6}}-\frac{2.4}{4\sqrt{6}}+\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4\sqrt{6}}\right]\)

\(=\frac{\sqrt{3}-1}{4}:\frac{\sqrt{18}+\sqrt{6}-8+\sqrt{6}+\sqrt{2}}{4\sqrt{6}}\)

\(=\frac{\sqrt{3}-1}{4}.\frac{4\sqrt{6}}{\sqrt{2}\left(\sqrt{9}+2\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\sqrt{3}+1\right)^2}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}\)............

Nguyễn tuấn nghĩa
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
13 tháng 6 2018 lúc 9:31

\(\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)

\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{4-3}}-\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4-3}}\)

\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1-\sqrt{3}+1\)\(\sqrt{3}+1>0\) và \(\sqrt{3}-1>0\) )

\(=2\)

\(\)

Nguyễn Tuấn Minh
13 tháng 6 2018 lúc 9:38

\(\sqrt{2\left(2+\sqrt{3}\right)}-\sqrt{2\left(2-\sqrt{3}\right)}\))

\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(1+\sqrt{3}-\sqrt{3}+1\)

\(2\)

Nguyễn Tất Đạt
13 tháng 6 2018 lúc 9:39

\(P=\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)

\(P=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(P=\sqrt{\frac{4+2\sqrt{3}}{4-3}}-\sqrt{\frac{4-2\sqrt{3}}{4-3}}\)

\(P=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(P^2=\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)^2\)

\(P^2=4+2\sqrt{3}-2\sqrt{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}+4-2\sqrt{3}\)

\(P^2=8-2\sqrt{16-4.3}=8-2\sqrt{4}=8-4=4\)

\(\Rightarrow P=\pm2\).