Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phạm Vân Thi
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
nguyen thi thu
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Đặng Thế Vinh
29 tháng 4 2019 lúc 9:10

a) P=(\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) ) : (\(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\) )

P=\(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

P=\(\frac{x-1}{\sqrt{x}}\)

b) P<2 <=> \(\frac{x-1}{\sqrt{x}}\)<2 <=>

\(x-1< 2\sqrt{x}\\ < =>x^2-6x-1< 0\\ < =>\left(x-3\right)^2-8< 0\\ < =>\left(x-3\right)^2< 8\\ < =>x< 2\sqrt{2}+3\)

Vương Đình Minh
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 21:28

\(a,A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\\ b,x=36\Leftrightarrow A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\\ \Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\\ d,A\in Z\Leftrightarrow1+\dfrac{2}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\\ \Leftrightarrow x\in\left\{0;1;9;16\right\}\)

\(e,A:B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}=-2\\ \Leftrightarrow\sqrt{x}=-2\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{3}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\)

Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:28

a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Vũ
Xem chi tiết
Haruko
Xem chi tiết
Tran Le Khanh Linh
17 tháng 8 2020 lúc 21:29

ta có \(A=\frac{\sqrt{x}+2}{x+\sqrt{x}+1}>0\forall x>0;x\ne1\left(1\right)\)

\(A-2=\frac{\sqrt{x}+2}{x+\sqrt{x}+1}-2=\frac{\sqrt{x}+2-2\sqrt{x}-2x-2}{\sqrt{x}+x+1}=\frac{-\sqrt{x}-2x}{\sqrt{x}+x+1}\le0\forall x\)

=> A =< 2 (2)

Từ (1) và (2) => 0<A =< 2 => A={1;2}

với A=1 \(\Rightarrow\frac{\sqrt{x}+2}{x+\sqrt{x}+1}=1\Leftrightarrow\sqrt{x}+2=x+\sqrt{x}+1\Leftrightarrow x=1\left(ktm\right)\)

với A=2\(\Rightarrow\frac{\sqrt{x}+2}{x+\sqrt{x}+1}=2\Leftrightarrow\sqrt{x}+2=2\sqrt{x}+2x+2\)

\(\Leftrightarrow2x+\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=0\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(ktm\right)\)

Vậy không có giá trị x để A là số nguyên

Khách vãng lai đã xóa
Phạm Thị Cẩm Huyền
Xem chi tiết
Tam Akm
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 19:33

1: \(P=\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}:\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}=\dfrac{\sqrt{x}-1}{x+1}\)

2: P<1/2
=>P-1/2<0

=>\(2\sqrt{x}-2-x-1< 0\)

=>-x+2căn x-1<0

=>(căn x-1)^2>0(luôn đúng)

Angela jolie
Xem chi tiết