cho tam giác ABC . gọi D ,E, F lan lượt là trung điểm cua AB,BC,AC . chứng minh rằng Sdef=1/4 Sabc
cho tam giác ABC. Gọi D là trung điểm của cạnh BC. Trên hai cạnh AB và AC lần lượt lấy hai điểm E và F. Chứng minh rằng SDEF<=SABC/2. Với vị trí nào của E và F thì SDEF đạt giá trị lớn nhất (S= diện tích)
cho tam giác abc d là trung điểm bc tren 1 cạnh ab, ac lần lượt lấy e, f CM Sdef >=1/2 Sabc
de lam chi can chi doi 2 nam nua la em tra loi dc a
☺☺☺
Trên các cạnh AB,BC của tam giác ABC lần lượt lấy các điểm E,F( khác các đỉnh).Gọi D là giao điểm của AF và CE.Chứng minh rằng Sbef/Sabc=Sdef/Sdac
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC. a)Chứng minh: Tứ giác ADEF là hình chữ nhật. b)Gọi M là điểm đối xứng của E qua D. Chứng minh: Tứ giác BMAE là hình thôi. c)Cho AB=3cm , BC=5cm. Tính Sabc d)Gọi O là giao điểm của AE và DF. Đường thẳng CO cắt EF tại G. Chứng minh: OG=1:6 CM
a: Xét ΔABC có
BE/BC=BD/BA
nên ED//AC và ED=AC/2
=>ED//AF và ED=AF
=>ADEF là hình bình hành
mà góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác BMAE có
D là trung điểm chung của BA vàME
EA=EB
Do đó: BMAE là hình thoi
c: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
S=1/2*3*4=6(cm2)
Bài toán 4. Cho tam giác nhọn ABC có BAC = 60° và AB > AC, các đường cao BE,CF (E,F lần lượt thuộc CA, AB). 1. Chứng minh rằng SABC= AB.AC.căn 3/4 và BC^2 = AB^2+AC^2 – AB AC. 2. Chứng minh rằng EF = BC/2và SBCEF = 3SAEF. 3. Gọi M,N lần lượt là trung điểm của BC,EF. Tia phân giác của BAC cắt MN tại I. Chứng minh rằng IM = 2IN và MFI= 30°. Giúp mình câu 2 và câu 3 với ạ mình cảm ơn
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
1:\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)
\(=AB\cdot AC\cdot\dfrac{1}{2}\cdot\dfrac{\sqrt{3}}{2}=AB\cdot AC\cdot\dfrac{\sqrt{3}}{4}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cos60=AB\cdot AC\)
=>\(BC^2=AB^2+AC^2-AB\cdot AC\)
2:
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AF=AB/AC
góc EAF chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB=cos60=1/2 và \(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)
=>EF=BC/2 và \(S_{AEF}=\dfrac{1}{4}\cdot S_{ABC}\)
=>\(S_{AEF}=\dfrac{1}{4}\left(S_{AEF}+S_{BFEC}\right)\)
=>\(\dfrac{3}{4}\cdot S_{AEF}=\dfrac{1}{4}\cdot S_{BFEC}\)
=>\(S_{BFEC}=3\cdot S_{AFE}\)
Cho tam giác ABC. Các điểm D, E, F lần lượt thuộc các đường thẳng BC, CA, AB sao cho B, C, A lần lượt là trung điểm của CD, AE, BF. Chứng minh rằng SDEF= 7SABC
\(S_{DEF}=S_{BDF}+S_{DCE}+S_{AFE}+S_{ABC}=2\left(S_{ABD}+S_{BCE}+S_{AFC}\right)+S_{ABC}=2.\left(S_{ABC}+S_{ABC}+S_{ABC}\right)+S_{ABC}=7.S_{ABC}\)
Bài 4: cho tam giác ABC , điểm O nằm trong tam giác. gọi D, E, F theo thứ tự là trung điểm OA, OB, OC .tính tỉ số SDEF/SABC
Xet ΔOAB có OD/OA=OE/OB=1/2
nên DE/AB=OD/OA=1/2
Xet ΔOAC có OD/OA=OF/OC=1/2
nên DF/AC=OD/OA=1/2
Xet ΔOBC có OE/OB=OF/OC
nên EF//BC
=>EF/BC=OE/OB=1/2
=>DE/AB=DF/AC=EF/BC
=>ΔDEF đồng dạng với ΔABC
=>\(\dfrac{S_{DEF}}{S_{ABC}}=\dfrac{1}{4}\)
1 đường thẳng song song với BC của tam giác ABC cát AB, AC lần lượt tại D và E. CMR: Mọi điểm F trên BC ta luôn có SDEF ≤ \(\dfrac{1}{4}\) SABC. Dường thẳng DE ở vị trí nào thì tam giác DEF có S lớn nhất.
Cho tam giác ABC và gọi D, E, F lần lượt là trung điểm các cạnh AB, BC, AC. Chứng minh rằng chu vi tam giác ABC bằng hai lần chu vi tam giác DEF.
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{BC}{2}\)
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: \(DE=\dfrac{AC}{2}\)
Xét ΔACB có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình của ΔACB
Suy ra: \(FE=\dfrac{AB}{2}\)
Ta có: \(C_{DEF}=DF+DE+EF\)
\(=\dfrac{AB+AC+BC}{2}\)
\(=\dfrac{C_{ABC}}{2}\)