Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần vũ hoàng phúc
Xem chi tiết
Kiều Vũ Linh
6 tháng 6 2023 lúc 20:56

Giả sử √a - √b < √(a - b)

⇔ (√a - √b)² < √(a - b)²

⇔ a - 2√(ab) + b < a - b

⇔ a - 2√(ab) + b - a + b < 0

⇔ 2b - 2√(ab) < 0

Do a > b > 0 nên ab > b²

⇒ √(ab) > b

2b - 2√(ab) < 0 (luôn đúng)

Vậy √a - √b < √(a - b)

Phùng Công Anh
6 tháng 6 2023 lúc 23:22

Do hai vế luôn dương nên ta thực hiện bình phương, khi đó:
\(a-2\sqrt{ab}+b< a-b <=>2b<2\sqrt{ab} <=>b< \sqrt{ab}\)

Ta có \(a>b>0 => ab>b^2 =>\sqrt{ab}>b\)

Từ đó có đpcm

Nguyễn Dương Thành Đạt
Xem chi tiết
弃佛入魔
9 tháng 7 2021 lúc 20:48

a)\(\sqrt{25}+\sqrt{9}=5+3=8\)

\(\sqrt{25+9}=\sqrt{36}=6\)

Do \( 8>6\)

\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)

Kiêm Hùng
9 tháng 7 2021 lúc 20:51

undefined

弃佛入魔
9 tháng 7 2021 lúc 20:55

Ta có: 

\((\sqrt{a+b})^{2}=a+b(1)\)

\((\sqrt{a}+\sqrt{b})^{2}=a+2\sqrt{ab}+b(2)\)

\(Theo giả thiết a,b>0 nên 2\sqrt{ab}>0,do đó từ(1) và(2) suy ra: (1)<(2),suy ra ĐPCM\)

Đăng Khoa Trần
Xem chi tiết
Phương Nguyễn Ngọc Mai
Xem chi tiết
Thắng Nguyễn
18 tháng 6 2017 lúc 11:28

Chứng minh điều ngược lại đúng tức là. Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\le​\left(1+1\right)\left(b+1+c+1\right)\)

\(=2\left(b+c+2\right)\le4\left(a+1\right)=VP\)

\(\Rightarrow\left(\sqrt{b+1}+\sqrt{1+c}\right)^2\le4\left(a+1\right)\)

\(\Rightarrow\sqrt{b+1}+\sqrt{1+c}\le\sqrt{4\left(a+1\right)}=2\sqrt{a+1}\)

BĐT cuối đúng hay ta có ĐPCM

Thắng Nguyễn
18 tháng 6 2017 lúc 11:35

Chứng minh điều ngược lại đúng, tức là :Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\le\left(1+1\right)\left(b+1+c+1\right)\)

\(=2\left(b+c+2\right)=2\left(2a+2\right)\)

\(=4\left(a+1\right)=2^2\sqrt{\left(a+1\right)^2}=VP^2\)

Vì \(VT^2\le VP^2\Rightarrow VT\le VP\)

BĐT kia đúng nên ta có ĐPCM

Thắng Nguyễn
18 tháng 6 2017 lúc 11:35

sr bn mk tưởng chưa gửi dc nên gửi lại, Sorry

Bach Hoang
Xem chi tiết
do phuong nam
6 tháng 11 2018 lúc 21:44

Nhận thấy \(a+b< a+b+2\sqrt{ab}\)<=>\(a+b< \left(\sqrt{a}+\sqrt{b}\right)^2\)

Do a,b đều dương, lấy căn 2 vế ta được: 

\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)(đpcm)

Chúc bạn học tốt!

♡ Nàng ngốc ♡
Xem chi tiết
Phạm Thị Thùy Linh
15 tháng 6 2019 lúc 12:43

Ta có : 

\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)

\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)

\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)

\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)

Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :

\(A+B=x\left(x^2-3y\right)+2y\)

\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)

\(\Rightarrow\)Các đa thức này là các số hữa tỉ  \(\left(đpcm\right)\)

Hắc Thiên
Xem chi tiết
Hà Phương
Xem chi tiết
Nguyễn Mai
Xem chi tiết