2.(3x-2) mũ 2 -3.(2x+5)mũ 2-6.(x-1).(x+1)
Bài 2: Tìm x, biết
a) (x+3) mũ 2 - (x-4)(x+8) = 1
b) (x+3)(x mũ 2 - 3x + 9) -x(x-2)(x+2) = 15
c) (x-2) mũ 2 - (x+3) mũ 2 - 4(x+1) = 5
d) (2x-3)(2x+3) - (x-1) mũ 2 - 3x(x-5) = -44
e) (x-2) mũ 3 - (x-3)(x mũ 2 + 3x + 9) + 6(x+1) mũ 2 = 49
f) 5x(x-3) mũ 2 - 5(x-1) mũ 3 + 15(x+2)(x-2) = 5
g) (x+3) mũ 3 - x(3x+1) mũ 2 + (2x+1)(4x mũ 2 - 2x + 1) - 3x mũ 2 = 42
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
f) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60=5\)
\(\Leftrightarrow30x=60\)
\(\Rightarrow x=2\)
g) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x=14\)
\(\Rightarrow x=\frac{7}{13}\)
1.(x -5) mũ 2 - 25 =0
2. (x -2) mũ 3 =27
3. 3(x -7) + 2x(x+2) = 2x mũ 2
4. (x mũ 2 - 4) (x +8) =0
5. x mũ 2 + 3x = 0
6. 3x mũ 3 - 3x = 0
7. (x +1) mũ 2 = ( 2x +3) mũ 2
1.(x -5)^2 - 25 =0
=> (x - 5)^2 = 25
=> x - 5 = 5 hoặc x - 5 = -5
=> x = 10 hoặc x = 0
vậy_
2. (x -2)^3 =27
=> x - 2 = 3
=> x = 5
vậy_
3. 3(x -7) + 2x(x+2) = 2x^2
=> 3x - 21 + 2x^2 + 4x = 2x^2
=> 7x - 21 = 0
=> 7x = 21
=> x = 3
vậy_
4. (x^2 - 4) (x +8) =0
=> x^2 - 4 = 0 hoặc x + 8 = 0
=> x^2 = 4 hoặc x = -8
=> x = 2 hoặc x = -2 hoặc x = -8
vậy_
5. x^ 2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
6. 3x^3 - 3x = 0
=> 3x(x^2 - 1) = 0
=> 3x(x - 1)(x + 1) = 0
=> x = 0 hoặc x = 1 hoặc x = -1
vậy_
7. (x +1)^2 = ( 2x +3)^2
=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0
=> (3x + 3)(-x - 2) = 0
=> x = -1 hoặc x = -2
vậy_
Bài làm
1) ( x - 5 )2 - 25 = 0
<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0
<=> x( x - 10 ) =
<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy S = { 0; 10 }
2) \(\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
Vậy x = 5 là nghiệm phương trình.
3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)
\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=\frac{21}{7}=3\)
Vậy x = 3 là nghiệm phương trình
4) \(\left(x^2-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)
Vậy S = { 2; -2; -8 }
5) \(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy S = { 0; -3 }
6) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy S = { +1; 0 }
7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)
Vậy S = { -2; -4/3 }
# Học tốt #
2(x-3)+5x(x-1)=5x mũ 2
(2x+1)(x -1)=0
3x-15=2x(x-5)
10× +3 phần 12=1 6+8x phần 9
(2x mũ 2+1)(4x-3)=(2x mũ 2+1)(x-12)
(x+7)(3x-1)=49-x mũ 2
2x(x+2)mũ 2 -8x mũ 2=2(x-2)(x mũ 2+2x+4)
(2x+5)mũ 2=(x+2)mũ 2
2(3x+1)+1 phần 4-5=2(3x-1) phần 5 3x+2 phần 10
3-7x phần 1+x=1 phần 2
X+7 phần x+4- 7 phần x-4=-56 phần x mũ 2 -16
x-3 phần x-2+x -2 phần x-4 =-1
1 phần x-1+2x mũ 2 -5 phần x mũ 3-1=4 phần x mũ 2+x+1
x-1 phần x+2-x phần x-2=5x -2 phần 4-x mũ 2
x-5=3x-2
1. 6 X mũ 3 -8 =40
2. 4 X mũ 5 +15=47
3. 2 X mũ 3-4=12
4. 5 X mũ 3-5=0
5. (X -5) mũ 2016 = (X-5) mũ 2018
6. (3X -2) mũ 20= (3X-1) mũ 20
7. (3X -1) mũ 10 = (3X-1) mũ 20
8. (2X -1) mũ 50 = 2X-1
9. (X phần 3 -5) mũ 2000= ( X phần 3-5) mũ 2008
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(5.\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Leftrightarrow\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-5-1\right)\left(x-5+1\right)=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-6\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)^{2016}=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x=6\\x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{4;5;6\right\}\)
Cho 3 đa thức:
M(x)=3x mũ 3+ x mũ 2+ 4x mũ 4- x- 3x mũ 3+5x mũ 4 +x mũ 2 - 6; N(x)=-x mũ 2-x mũ 4+ 4x mũ 3- x mũ 2-5x mũ 3 + 3x + 1 +x; P(x)= 1 + 2x mũ 5 - 3x mũ 2 + x mũ 5 + 3x mũ 3 - x mũ 4- 2x
Giup mình nhanh nha!!!
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
tính nghiệm x) 1 mũ 2 -9x+8 2)3x mũ 2 -7x+4 3)2x mũ 2+5x-7 4) 3x mũ 2-9x+6 5)x mũ 2 +2x-3
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
`4)`
\(3x^2 - 9x + 6 = 0\)
`<=> 3x^2 - 3x - 6x + 6 = 0`
`<=> (3x^2 - 3x) - (6x - 6) = 0`
`<=> 3x(x - 1) - 6(x - 1) = 0`
`<=> (3x - 6)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 2}.`
`5)`
\(x^2 + 2x - 3=0\)
`<=> x^2 + 3x - x - 3 = 0`
`<=> (x^2 - x) + (3x - 3) = 0`
`<=> x(x - 1) + 3(x - 1) = 0`
`<=> (x+3)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; -3}.`
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
làm phép tính chia
n, ( 2 + x + 8x mũ 3 - 2x mũ 2 ) : ( 2x + 1 )
r, ( 8x - 5 - 3x mũ 3 - 3x mũ 2 + x mũ 4 ) : ( x - 1 )
a, ( x mũ 3 + 2 + x ) : ( x + 1 )
b, ( x mũ 4 + 3x + 1 + 3x mũ 3 ) : ( x mũ 2 + 1 )
2.(3x-2) mũ 2 -3.(2x+5)mũ 2-6.(x-1).(x+1)