Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần xuân quyến
Xem chi tiết
alibaba nguyễn
23 tháng 6 2017 lúc 11:19

Đầu tiên ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{1}{\frac{1}{a}+b+1}+\frac{1}{\frac{1}{b}+\frac{1}{ab}+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

Quay lại bài toán ta có:

\(\frac{1}{\left(a+1\right)^2+b^2+1}=\frac{1}{a^2+b^2+2a+2}\le\frac{1}{2\left(ab+a+1\right)}\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)}\\\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\end{cases}}\)

Từ đó suy ra 

\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\)

\(\le\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\)

Thắng Nguyễn
23 tháng 6 2017 lúc 11:36

Câu hỏi của Nguyễn Trọng Kiên - Toán lớp 9 - Học toán với OnlineMath

Hoàng Đức Khải
Xem chi tiết
I lay my love on you
Xem chi tiết
Phương Tuyết
Xem chi tiết

Đặt: \(\hept{\begin{cases}\frac{1-a}{1+a}=x\\\frac{1-b}{1+b}=y\\\frac{1-c}{1+c}=z\end{cases}}\)

\(\Rightarrow-1< x,y,z< 1\)và \(\hept{\begin{cases}\frac{1-x}{1+x}=a\\\frac{1-y}{1+y}=b\\\frac{1-z}{1+z}=c\end{cases}}\)

Theo đề bài ta có: \(abc=1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(\Rightarrow x+y+z+xyz=0\)

Mặt khác ta có: \(\frac{4a}{\left(a+1\right)^2}=1-x^2;\frac{2}{a+1}=1+x\)

Và: \(\frac{4b}{\left(b+1\right)^2}=1-y^2;\frac{2}{b+1}=1+y\)

Và: \(\frac{4c}{\left(c+1\right)^2}=1-z^2;\frac{2}{c+1}=1+z\)

Nên: \(\frac{4a}{\left(a+1\right)^2}+\frac{4b}{\left(b+1\right)^2}+\frac{4c}{\left(c+1\right)^2}\le1+2.\frac{2}{a+1}.\frac{2}{b+1}.\frac{2}{c+1}\)

\(\Leftrightarrow x^2+y^2+z^2+\left(xy+yz+zx\right)+2\left(x+y+z+xyz\right)\ge0\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge0\)

Đây là BĐT luôn đúng nên ta có đpcm.

Khách vãng lai đã xóa
tth_new
26 tháng 1 2020 lúc 20:21

ミ★ᗪเệų ℌųуềй (ßăйǥ ßăйǥ ²к⁶)★彡 Giải ghê quá, t chẳng hiểu gì.

Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

BĐT \(\Leftrightarrow \sum\limits_{cyc} \frac{xy}{(x+y)^2} \leq \frac{1}{4}+\frac{4xyz}{(x+y)(y+z)(z+x)}\)

Ta có: \(VP-VT=\frac{4\left(x-y\right)^2\left(y-z\right)^2\left(z-x\right)^2}{4\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\ge0\)

BĐT hiển nhiên đúng.

Khách vãng lai đã xóa
tth_new
26 tháng 1 2020 lúc 20:22

Ôi trời, dòng 3 gõ latex mà olm không hiện à?

BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{xy}{\left(x+y\right)^2}-\frac{1}{4}\le\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Khách vãng lai đã xóa
Phạm Minh anh
Xem chi tiết
Anh Phương
Xem chi tiết
Nhok_baobinh
Xem chi tiết
Lê Thế Minh
10 tháng 12 2017 lúc 11:26

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Trần Đức Thắng
Xem chi tiết
Tài Nguyễn Tuấn
14 tháng 11 2015 lúc 22:18

Gợi ý : Dùng BĐT Cô-si nhé!

Li-ke dùm 1 cái

Tuấn
15 tháng 11 2015 lúc 13:05

\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+2}\le\frac{1}{2\left(ab+a+1\right)}\)
Tương tự cho mấy cái kia (bạn hoán vị vòng nha )...
khi đó \(VT\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\)(*)

Do:\(\frac{1}{ab+a+1}=\frac{c}{1+ac+c}\)(1)
      \(\frac{1}{bc+b+1}=\frac{ca}{c+1+ac}\)(2)
\(\frac{1}{ac+c+1}\)(3)
Cộng từng cé (1)(2)(3)=> VT=1
kết hớp (*)=>dpcm
Dấu = xảy ra khi a=b=c =1

asuna
Xem chi tiết