Cho các số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)
Cho a,b,c>0 thỏa mãn: a.b.c=8
Chứng minh: \(\frac{a^2}{\sqrt{\left(1+a^3\right).\left(1+b^3\right)}}+\frac{b^2}{\sqrt{\left(1+b^3\right).\left(1+c^3\right)}}+\frac{c^2}{\sqrt{\left(1+c^3\right).\left(1+a^3\right)}}\ge\frac{4}{3}\)
Cho a,b,c >0 thỏa mãn \(b^2+c^2\)≤\(a^2\)
Chứng minh rằng : \(\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)≥5
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\le\frac{3}{4}\)
Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Cho a,b,c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và \(\frac{2}{bc}-\frac{1}{c^2}=4\)
a) Chứng minh rằng: \(\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
b) Tính giá trị biểu thức \(Q=\left(a+2b+c\right)^{2019}\)
Cho tam giác ABC có AB=c, BC=a, AC=b và \(P=\frac{a+b+c}{2}\)
CMR: a) (P-a)(P-b)(P-c) \(\le\)\(\frac{1}{8}abc\)
b) \(\frac{1}{P-a}+\frac{1}{P-b}+\frac{1}{P-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
c) \(\frac{1}{\left(P-a\right)^2}+\frac{1}{\left(P-b\right)^2}+\frac{1}{\left(P-c\right)^2}\ge\frac{P}{\left(P-a\right)\left(P-b\right)\left(P-c\right)}\)