Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu_Bao_Ngoc
Xem chi tiết
Edogawa Conan
3 tháng 11 2019 lúc 9:42

1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2

= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)

= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2

= -3x3 - 3x2 + 4x + 1

2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3

=> (x + 2)(x - 1 - x + 3) = 3

=> (x + 2).0 = 3

...(xem lại đề)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
3 tháng 11 2019 lúc 9:52

\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)

\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)

\(\Leftrightarrow2\left(x+2\right)=3\)

\(\Leftrightarrow x+2=\frac{3}{2}\)

\(\Leftrightarrow x=\frac{3}{2}-2\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 11 2019 lúc 11:02

\(x^2+11x-13=0\)

Ta có: \(\Delta=11^2+4.13=173\)

Vậy pt có 2 nghiệm phân biệt:

\(x_1=\frac{-11+\sqrt{173}}{2}\);\(x_2=\frac{-11-\sqrt{173}}{2}\)

\(2x^2-5x+2=0\)

Ta có: \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)

Vậy pt có 2 nghiệm phân biệt:

\(x_1=\frac{5+3}{4}=2\);\(x_2=\frac{5-3}{4}=\frac{1}{2}\)

Khách vãng lai đã xóa
Tạ Minh Phương
Xem chi tiết
Kiet Leanh Huynh
Xem chi tiết
Kiki :))
26 tháng 2 2021 lúc 10:23

Phương trình bậc nhất một ẩn duy nhất là câu a phương trình 2x+3=7.

Blinkstt
Xem chi tiết
Aikawa Maiya
13 tháng 7 2018 lúc 7:21

1) câu này sai đề hả bn? -.-

\(2)B=-x^2-4x-7\)

\(B=-\left(x^2+4x+7\right)\)

\(B=-\left(x^2+4x+4+3\right)\)

\(B=-\left[\left(x+2\right)^2+3\right]\)

\(B=-\left(x+2\right)^2-3\)

Vậy biểu thức trên luôn âm với mọi giá trị của x.

\(3)C=-x^2-6x-11\)

\(C=-\left(x^2+6x+11\right)\)

\(C=-\left(x^2+6x+9+2\right)\)

\(C=-\left[\left(x+3\right)^2+2\right]\)

\(C=-\left(x+3\right)^2-2\)

Vậy biểu thức trên luôn âm với mọi x.

linhlucy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2022 lúc 21:24

1: \(=-\left(x^2+2x+2\right)\)

\(=-\left(x^2+2x+1+1\right)\)

\(=-\left(x+1\right)^2-1< 0\)

2: \(=-\left(x^2+4x+7\right)\)

\(=-\left(x^2+4x+4+3\right)\)

\(=-\left(x+2\right)^2-3< 0\)

3: \(=-\left(x^2+6x+11\right)\)

\(=-\left(x^2+6x+9+2\right)\)

\(=-\left(x+3\right)^2-2< 0\)

Trần quỳnh anh
Xem chi tiết
Hắc Hường
24 tháng 6 2018 lúc 22:12

Giải:

a) \(x\left(x-2\right)-\left(x+3\right).x+7+9x=6\)

\(\Leftrightarrow x^2-2x-\left(x^2+3x\right)+7+9x=6\)

\(\Leftrightarrow x^2-2x-x^2-3x+7+9x=6\)

\(\Leftrightarrow4x=-1\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

Vậy ...

b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

\(\Leftrightarrow21x-35-15x^2+25x-\left(10x+2-15x^2+6x\right)=4\)

\(\Leftrightarrow21x-35-15x^2+25x-10x-2+15x^2-6x=4\)

\(\Leftrightarrow30x-37=4\)

\(\Leftrightarrow30x=41\)

\(\Leftrightarrow x=\dfrac{41}{30}\)

Vậy ...

c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14x\) (Sửa đề)

\(\Leftrightarrow x^3+8-x^3-3=14x\)

\(\Leftrightarrow5=14x\)

\(\Leftrightarrow x=\dfrac{5}{14}\)

Vậy ...

d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)

\(\Leftrightarrow x^3+1-x^3-3x=2\)

\(\Leftrightarrow1-3x=2\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

Thi Duyen Dang
25 tháng 6 2018 lúc 9:22

a) \(x\left(x-2\right)-\left(x+3\right)x+7+9x=6\)

=> \(x^2-2x-x-3x+7+9x=6\)

=> \(x^2-2x-x^2-3x+7+9x=6\)

=> \(\left(x^2-x^2\right)+\left(-2x-3x+9x\right)=6-7\)

=> \(4x=-1\)

Vậy \(x=\dfrac{-1}{4}\)

b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

=>\(21x-15x^2-35+25x-10x+15x^2-4+6x=4\)

=> \(\left(21x+25x-10x+6x\right)\)\(+\left(-15x^2+15x^2\right)\)\(=4+35+4\)

=> \(42x=43\)

Vậy \(x=\dfrac{43}{42}\)

c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14\)

=> \(x^3-2x^2+4x+2x^2-4x+8-x^3-3\)\(=14x\)

=>\(\left(x^3-x^3\right)+\left(-2x^2+2x^x\right)+\left(4x-4x\right)+\left(8-3\right)\)\(=14x\)

=> \(5=14x\)

Vậy \(x=\dfrac{5}{14}\)

d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)

=> \(x^3+x^2+x+x^2-x+1-x^3-3x=2\)

=>\(\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x-3x\right)=2-1\)

=> \(-3x=1\)

Vậy \(x=\dfrac{-1}{3}\)

Phạm Huyền Trang
Xem chi tiết
o0o I am a studious pers...
16 tháng 10 2016 lúc 11:43

\(5x\left(x-3\right)=x-3\)

\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)

Tran Bichchau
Xem chi tiết
₮ØⱤ₴₮
31 tháng 3 2020 lúc 8:11

\(1.\left(x^3-1\right)\left(x^2+1\right)=0\)

\(< =>\left\{{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}x^3=1\\x^2=-1\left(kxđ\right)\end{matrix}\right.\)

<=>x=1

vậy ...

\(2.\left(2x+6\right)\left(3x^2-12\right)=0\)

\(< =>\left\{{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

vậy ...

Khách vãng lai đã xóa
Vị thần toán hc
31 tháng 3 2020 lúc 9:03

Trong Th này bn nên dùng dấu ''hoặc''

a,\(\left(x^3-1\right)\left(x^2+1\right)=0\)

\(\left[{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x^3=1\\x^2=-1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=\pm1\end{matrix}\right.\)

b, \(\left(2x+6\right)\left(3x^2-12\right)=0\)

\(\left[{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-3\\x=\pm2\end{matrix}\right.\)

Khách vãng lai đã xóa
Tùng Free Fire
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2023 lúc 13:00

=>x(x+1)+1 chia hết cho x+1

=>1 chia hết cho x+1

=>\(x+1\in\left\{1;-1\right\}\)

=>\(x\in\left\{0;-2\right\}\)