8x-4x =1208
(2*x-3) *3 =21
720/ 41 (2*x-5 )] =8*5
Tìm x biết
1) 2x - 378 = 122
2) 8x - 4x = 1208
3) x - 382 = 159 : 3
4) 3x + 30 = 420
5) 12x - 13x - 500 = 1500
1) 2x - 378 = 122
=> 2x = 122 + 378
=> 2x = 500
=> x = 500 : 2
=> x = 250
2) 8x - 4x = 1208
=> 4x = 1208
=> x = 1208 : 4
=> x = 302
3) x - 382 = 159 : 3
=> x - 382 = 53
=> x = 53 + 382
=> x = 435
4) 3x + 30 = 420
=> 3x = 420 - 30
=> 3x = 390
=> x = 390 : 3
=> x = 130
5) 12x - 13x - 500 = 1500
=> -x = 1500 + 500
=> -x = 2000
=> x = -2000
1,\(2x-378=122\)
\(2x=122+378\)
\(2x=500\)
\(x=500:2\)
\(x=250\)
2,\(8x-4x=1208\)
\(x.\left(8-4\right)=1208\)
\(x.4=1208\)
\(x=1208:4\)
\(x=302\)
3,\(x-382=159:3\)
\(x-382=53\)
\(x=52+382\)
\(x=434\)
4,\(3x+30=420\)
\(3x=420-30\)
\(3x=390\)
\(x=390:3\)
\(x=130\)
5,\(12x-13x-500=1500\)
như câu 2
\(1,2x-378=122\)\(\Rightarrow2x=500\Rightarrow x=250\)
\(2,8x-4x=1208\)\(\Rightarrow4x=1208\Rightarrow x=302\)
\(3,x-382=159\div3\)\(\Rightarrow x-382=53\Rightarrow x=435\)
\(4,3x+30=402\)\(\Rightarrow3x=372\Rightarrow x=124\)
\(5,12x-13x-500=1500\)\(\Rightarrow-x-500=1500\Rightarrow-x=1000\Leftrightarrow x=-1000\)
1.Tìm số tự nhiên x biết :
a) (x-5).4=0
b) 8x-4x=1208
c) (x-4)(x-3=0
d) 1+2+3+...+x=55
e) 3x:32=234
f) 2x.64=26
2. Tìm số tự nhiên x:
a) 720:[41-(2x-5)]=23.5
b) 5x+3(10-x)+x=45 (Gợi ý: dùng t/c phân phối phá ngoặc).
GIÚP MÌNH CÓ ĐÁP ÁN CÀNG SỚM CÀNG TỐT , ĐÁP ÁN Đ CÁM ƠN NHIỀU ^v^
\(\left(x-5\right).4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\4=0\left(ktm\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\4=0\left(ktm\right)\end{cases}}}\)
vậy x=5
\(8x-4x=1208\)
\(x\left(8-4\right)=1208\)
\(x4=1208\)
\(\Rightarrow x=1208:4=302\)
\(\left(x-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)
vậy x=4 hoặc x=3
đề sai \(3^x:3^2=243\)
\(3^{x-2}=243\)
\(3^{x-2}=3^5\)
\(\Rightarrow x-2=5\)
\(\Rightarrow x=7\)
\(2^x.64=2^6\)
\(2^x.2^6=2^6\)
\(2^{x+6}=2^6\)
\(\Rightarrow x+6=6\)
\(\Rightarrow x=0\)
Tìm x biết :
a, ( 3x + 2016 ) - ( 2x - 15 ) = 2016
b, - 2(x + 41 ) - (8x - 82 ) = 3 - 9x
c, ( 4x - 1) - (52 + 3x) = 2x - 41
d, - ( 3x + 217 ) - ( 4x - 217) + 5 = 3 - 8x
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
a)2 x +15=27
b)8x -4x =1208
b2 Tìm aEN biết a chia cho 3 được thương là 10
a)2x + 15 = 27
2x = 12
x = 6
b.1)8x - 4x = 1208
4x = 1208
x = 302
b.2)a : 3 = 10
=> a = 10 x 3
=> a = 30
Bài 1 : Bài giải
a, \(2x+15=27\)
\(2x=12\)
\(x=6\)
b, \(8x-4x=1208\)
\(4x=1208\)
\(x=302\)
Bài 2 : Bài giải
Gọi số cần tìm là a ( \(a\inℕ^∗\) )
Ta có : a : 3 = 10
a = 30
Vậy số cần tìm là 30
các bạn giúp mik bài này vs
5) (4x-5).(x+2)-(x+5).(x-3)-3x^2-x
6) (x-3).(x+7)-(2x-1).(x+2)+x.(x-1)
7) (7x-3).(2x+1)-(5x-2).(x+4)-9x^2+17x
8) -2.(x-7).(x+3)+(5x-1).(x+4)-3x^2-27x
9) (6x-5).(x+8)-(3x-1).(2x+3)-9.(4x-3)
10) (8x-1).(x+7)-(x-2).(8x+5)-11.(6x+1).
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
19 Tìm x, biết
a) (x+2)(x+3)-(x-2)(x+5)=0 ; b) (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
c) (8-4x)(x+2)+4(x-2)(x+1)=0 ; d) (2x-3)(8x+2)=(4x+1)(4x-1)-3
A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\) .Vậy \(S=\left\{-8\right\}\)
B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)
C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)
D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)
a)(x+2)(x+3)-(x-2)(x+5)=0
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
<=>2x=-16
<=>x=-8
b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)
c)(8-4x)(x+2)+4(x-2)(x+1)=0
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)
d)(2x-3)(8x+2)=(4x+1)(4x-1)-3
\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)
\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)
\(\dfrac{1}{x+3}+\dfrac{8-x}{4x^2+8x}\)
\(\dfrac{3-2x}{\left(x-5\right)\left(x+2\right)}+\dfrac{1}{x+5}\)
a) Ta có: \(\dfrac{1}{x+3}+\dfrac{8-x}{4x^2+8x}\)
\(=\dfrac{1}{x+3}+\dfrac{8-x}{4x\left(x+2\right)}\)
\(=\dfrac{4x\left(x+2\right)}{4x\left(x+3\right)\left(x+2\right)}+\dfrac{\left(8-x\right)\left(x+3\right)}{4x\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+8x+8x+24-x^2-3x}{4x\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{3x^2+13x+24}{4x\left(x+3\right)\left(x+2\right)}\)
b) Ta có: \(\dfrac{3-2x}{\left(x-5\right)\left(x+2\right)}+\dfrac{1}{x+5}\)
\(=\dfrac{\left(3-2x\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)\left(x+2\right)}+\dfrac{\left(x-5\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}\)
\(=\dfrac{3x+15-2x^2-10x+x^2+2x-5x-10}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}\)
\(=\dfrac{-x^2-10x+5}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}\)