Chứng minh rằng với mọi a, b, c dương ta có;
\(\Sigma_{cyc}\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}\le\frac{6}{5}\)
Chứng minh rằng với mọi số nguyên dương a,b,c ta luôn có:
1<a/a+b+b/b+c+c/c+a<2
Chứng minh rằng với mọi a,b,c dương ta luôn có
1/(a(1+b))+1/(b(1+c))+1/(c(1+a))≤3/(1+abc)
cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!
^_^
Chứng minh rằng với mọi số thực dương a,b ta có :a^2/b+b^2/a lớn hơn hoặc bằng a+b.
Giúp mình với .
a^2/b+b^2/a>=a+b
=>a^3+b^3>=ab(a+b)
=>a^3+b^3-a^2b-ab^2>=0
=>a^2(a-b)+b^2(b-a)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
Chứng minh rằng với mọi số nguyên dương a, b, c ta luôn có: \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
day ko phai lop 4ok
chứng minh rằng với mọi số nguyên dương a, b, c ta luôn có:
1<a/a+b + b/b+c+ c/c+a<2
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(ĐK: a , b ,c > 0)
Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{b}{a+b+c}>\frac{a+b+c}{a+b+c}=1\) (1)
Áp dụng BĐT: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (ĐK: a,b,c thuộc N*).Ta thấy:
\(\left(a+b\right)< \frac{\left(a+b\right)}{a+b+c}\)
\(\left(b+c\right)< \frac{\left(b+a\right)}{a+b+c}\)
\(\left(c+a\right)< \frac{\left(c+b\right)}{a+b+c}\)
Cộng các vế lại. Ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{\left(a+b\right)}{a+b+c}+\frac{\left(b+a\right)}{a+b+c}+\frac{\left(c+b\right)}{a+b+c}< \frac{2.\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1) và (2), suy ra ĐPCM
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác ± 1, biểu thức:
x + 2 x - 1 x 3 2 x + 2 + 1 - 8 x + 7 2 x 2 - 2 luôn luôn có giá trị dương.
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
Chứng minh rằng
Với mọi số nguyên dương a,b,c ta có
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333
BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)
<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
=> Ta có điều phải chứng minh.
Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:
\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.
\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.
\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)
lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)
Dấu ''='' xảy ra khi a=b=c
BĐT đã cho có thể viết lại dưới dạng :
\(a\left(b-c\right)^2+b.\left(c-a\right)^2+c.\left(a-b\right)^2\ge0\) ( Luôn đúng )
Vậy BĐT được chứng minh.
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
chứng minh rằng : Với mọi số dương a, b, c, d ta có:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)
Xét BĐT phụ \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)
Tương tự ta có:
\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)
Cộng lại theo vế ta có:
\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)
\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)
Vậy BĐT đc chứng minh
CHỨNG MINH RẰNG VỚI MỌI N NGUYÊN DƯƠNG TA CÓ :
B, n^3 +11n chia hết cho 6 . HELP ME
Ta có:
n3 + 11n
= n3 - n + 12n
= n.(n2 - 1) + 12n
= n.(n - 1).(n + 1) + 12n
= (n - 1).n.(n + 1) + 12n
Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3
Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6
=> n3 + 11n chia hết cho 6 ( đpcm)