Những câu hỏi liên quan
Love
Xem chi tiết
Nhật Nguyễn
Xem chi tiết
Kiệt Nguyễn
27 tháng 5 2020 lúc 11:08

Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)

và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)

Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)

\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)

Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)

Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa
Muốn đỗ chuyên Toán
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Trần Minh Hoàng
11 tháng 7 2020 lúc 8:03

Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).

Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)

Thật vậy:

(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)

\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).

Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)

\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự, ta có:

\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)

Bình luận (0)
Nguyễn Huệ Lam
Xem chi tiết
Nguyễn Võ Anh Nguyên
10 tháng 8 2017 lúc 6:12

\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}\)( Vì xyz=1 nên \(\sqrt{xyz}=1\))

\(P=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xy}\right)}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{x}+1+\sqrt{xy}}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{xyz}}{\sqrt{x}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=\frac{\sqrt{y}+1+\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=1\)

Bình luận (0)
Baek Hyun
Xem chi tiết
Trung Nguyen
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Lầy Văn Lội
31 tháng 5 2017 lúc 0:22

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

Bình luận (0)