Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Lan Anh
Xem chi tiết
Hoàng Phúc
Xem chi tiết
nguyen lam
Xem chi tiết
Tiểu Sam Sam
Xem chi tiết
nguyen lam
Xem chi tiết
Linh
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
tthnew
5 tháng 7 2019 lúc 18:02

Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:

\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)

Áp dụng BĐT AM-GM,ta được:

\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge3+3+2+\frac{1}{4}.20=13\)

Dấu "=" xảy ra khi a = 2; b=3;c=4

VẬy A min = 13 khi a = 2; b=3;c=4

Akai Haruma
5 tháng 7 2019 lúc 22:23

Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min

Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)

\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)

\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)

Áp dụng BĐT AM-GM:

\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)

Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)

Akai Haruma
5 tháng 7 2019 lúc 22:25

Bài 3:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(A=a+\frac{2}{a^2}=\frac{a}{2}+\frac{a}{2}+\frac{2}{a^2}\geq 3\sqrt[3]{\frac{a}{2}.\frac{a}{2}.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)

Vậy \(A_{\min}=3\sqrt[3]{\frac{1}{2}}\) khi \(a=\sqrt[3]{4}\)

Thu Trang
Xem chi tiết
Trần Tuyết Nhi
Xem chi tiết