cho x,y>0 thỏa mãn \(2x^2+3y^2=4\)
Cmr: \(x+2y\le\sqrt{\frac{22}{3}}\)
Cho x,y thuộc R, \(2x^2+3y^2=4\)
Cmr:\(x+2y\le\sqrt{\frac{22}{3}}\)
\(x+2y=\sqrt{\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+\frac{2}{\sqrt{3}}.\sqrt{3}y\right)^2}\le\sqrt{\left(\frac{1}{2}+\frac{4}{3}\right)\left(2x^2+3y^2\right)}=\sqrt{\frac{22}{3}}\)
Cho x,y khác 0.
CMR : \(\frac{2x^2+3y^2}{2x^3+3y^3}+\frac{3x^2+2y^2}{3x^3+2y^3}\le\frac{4}{x+y}\)
Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?
Cho x >0; y> 0 thỏa mãn \(x^2+y^2\le x+y\)
CMR \(x+3y\le2+\sqrt{5}\)
1 Cho x,y,z > 0 . CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{36}{9+x^2y^2+y^2z^2+z^2x^2}\)
2 . Cho a,b,c>0 thỏa mãn ab+bc+ac=1. CMR
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}\)
Bài 1 :
Bât đẳng thức cần chứng minh tương đương với :
( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz
Áp dụng bất đẳng thức Côsi ta có :
xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\) ( 1)
Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)
hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\) (2)
Do các vế đều dương ,từ (1) và (2) suy ra :
( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi x = y =z = 1
Bài 2:
\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)
Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)
CHo x, y tm \(2x^2+3y^2=4\)
x+2y\(\le \sqrt{\frac{22}{3} } \)
Cho x,y,z thuộc R+ thỏa mãn:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\)
CMR: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)
Do đó:
\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)
\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)
Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)
a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Cho x, y > 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}=2\) Chứng minh: \(\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{1}{2}\)
\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)
Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)
\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)
...
Cho các số dương x,y, z thỏa mãn xyz=1
CMR: \(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}\)+\(\frac{y^2z^2}{2y^2+z^2+3y^2z^2}\)+\(\frac{z^2x^2}{2z^2+x^2+3z^2x^2}\)\(\le\)\(\frac{1}{2}\)
Bạn CM x=y=z=1
Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2
Cuối cùng bạn sẽ kết luận:
Vì 1/2 ≤ 1/2
Nên ...(biểu thức)...≤1/2