chứng minh rằng 19^19+69^69 chia hết cho 44
các bạn giải chi tiết giúp mình nhé!!!
Chứng minh rằng: a, \(8^5+2^{11}\)chia hết cho 17
b,\(19^{19}+69^{19}\)chia hết cho 44
Giải chi tiết giúp mình vớiii
a/ \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{22}\cdot17\)
17 chia hết 17 nên 222 . 17 chia hết 17 => dpcm
b/ \(19^{19}+69^{19}=\left(19+69\right)\left(19^{19-1}-19^{19-2}\cdot69+19^{19-3}\cdot69^2-19^{19-4}\cdot69^3+...+69^{19-1}\right)\)
\(=88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)
88 chia hết 44 nên \(88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)chia hết 44 => dpcm
Chứng minh rằng
A. 8^5+2^11 chia hết cho 17
B.19^19+69^19 chia hết cho 44
a)Đặt \(A=8^5+2^{11}\)
\(A=\left(2^3\right)^5+2^{11}\)
\(A=2^{15}+2^{11}\)
\(A=2^{11}\left(2^4+1\right)\)
\(A=2^{11}\cdot17⋮17\left(đpcm\right)\)
Chứng minh rằng: 1919 + 6919 chia hết cho 44.
Giúp với...
#Đức Lộc#
19^19 + 69^19 chia hết cho 44
Ta có a^n + b^n =(a + b)[a^(n - 1) - a^(n - 2).b + a^(n - 3).b^2 - ......+b^(n - 1) với n lẻ
19^19 + 69^19 = (19 + 69)(19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
Vì 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44.
\(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ (bạn không cần chứng minh đâu)
Ta có: \(\left(19^{19}+69^{19}\right)⋮\left(19+69\right)\Rightarrow19^{19}+69^{19}⋮88\Rightarrow19^{19}+69^{19}⋮44\)
Ta có a^n + b^n =(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19 = (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
Chứng minh
19^19+69^19 chia hết cho 44
Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/97390453659.html
Chứng minh 1919+6919 chia hết cho 44
Chứng minh chia hết :
a, \(328^3+172^3\) chia hết cho 2000
b, \(69^2-69.5\) chia hết cho 32
c, \(19^{19}+69^{19}\) chia hết cho 44
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)
Trong một cuộc thi, ban giám khảo chấm cho các bạn học sinh một số điểm, biết rằng số điểm chia cho 19 thi dư 7 chia cho 69 thì thừa 2 điểm. Tìm số điểm mà ban giám khảo chấm cho các bạn học sinh, biết rằng số điểm bé hơn 200 và lớn hơn 100.
Giải chi tiết vào nhé mình sẽ tích cho.
đồng dư thức: chứng minh
220^119^69 +119^69^220 +69^ 220^19 chia hết cho 102
giúp mình với, cảm ơn mọi người
220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )
119 ≡ −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )
69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )
119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )
69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )
Suy ra A ⋮ 17 (2)
Lại có A là số chẵn (Vì \(69^{220^{119}}\), \(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)
Suy ra: A ⋮ 2 (3)
Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102
1/Chứng minh rằng:
a/85+211 chia hết cho 17
b/1919+6911 chia hết cho 44
a) 85+211
=(23)5+211=215+211
=211(24+1)
=211.17 (chia hết cho 17 )
Vậy 85+211 chia hết cho 17
b)Ta có a^n + b^n
=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19
= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44