viết pt đường thẳng d biết
đi qua điểm A(3,-2) và song song với đường thẳng y=3
Viết phương trình đường thẳng (d) biết:
a) Đường thẳng (d) đi qua điểm A(2; -1) và song song với đường thẳng y = 3x+1.
b) Đường thẳng (d) đi qua điểm B(-3; 4) và vuông góc với đường thẳng y = 2x + 3.
c) Đường thẳng (d) đi qua điểm C là giao điểm của 2 đường thẳng y = x + 1 và y = -2x,
đồng thời vuông góc với đường thẳng y = -5x + 3.
a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Suy ra: (d): y=3x+b
Thay x=2 và y=-2 vào (d), ta được:
\(3\cdot2+b=-2\)
\(\Leftrightarrow b=-8\)(thỏa ĐK)
Vậy: (d): y=3x-8
b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)
hay \(a=-\dfrac{1}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+b\)
Thay x=-3 và y=4 vào (d), ta được:
\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)
\(\Leftrightarrow b+\dfrac{3}{2}=4\)
hay \(b=\dfrac{5}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)
Viết pt tổng quát của đường thẳng d
a) Đi qua điểm M(-2;-5) và song song với đường phân giác góc phần tư thứ nhất
b) Đi qua điểm M(3;-1) và vuông góc với đường phân giác góc phần tư thứ hai
c) Viết pt tham số của đg thẳng d đi qua điểm M(-4;0) và vuông góc với đường phân giác thứ hai
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
Cho điểm A(-3;-1), B(2;1), đường thẳng d: x-y+1=0.
a. Tính khoảng cách từ A, B đến đường thẳng d.
b. Viết pt đường thẳng d1 đi qua A và vuông góc với d.
c. Viết phương trình đthẳng d2 đi qua B và song song với d.
d. Viết pt đường tròn (C) có tâm I thuộc d và đi qua 2 điểm A, B
Viết pt đường thẳng \(\Delta\)
a) Viết pt đường thẳng d Đi qua \(M\left(1;\dfrac{1}{2}\right)\) và song song với \(\Delta\) biết \(\Delta\)trùng với Ox
b)Viết pt đường thẳng d Đi qua \(M\left(3;4\right)\) và vuông góc với \(\Delta\) biết \(\Delta\) trùng với Ox
c )Viết pt đường thẳng d Đi qua \(M\left(-1;2\right)\) và vuông góc với \(\Delta\) biết \(\Delta\) trùng với Oy
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)
Cho A ( 1; 3 ), B( 4; -1 ), (d) x = 2y+1
a, Viết pt đường thẳng qua A, B
b, Viết pt đường thẳng đi qua A và cắt trục hoành tại điểm có tung độ = -1
c, Viết pt đường thẳng qua A và có hệ số góc là 5
d, Viết pt đường thẳng qua A song song với (d)
e, Viết pt đường thẳng qua A vuông góc với (d)
(d): 2y+1=x
=>2y=x-1
=>y=1/2x-1/2
a: Gọi (d1): y=ax+b là phương trình đường thẳng AB
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)
c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm
Vì (d2) có hệ số góc là 5 nên a=5
Vậy: (d2): y=5x+b
Thay x=1 và y=3 vào (d2), ta được:
b+5=3
hay b=-2
d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm
Vì (d3)//(d) nên a=-1/2
Vậy: (d3): y=-1/2x+b
Thay x=1 và y=3 vào (d3), ta được;
b-1/2=3
hay b=7/2
đường thẳng (d) : y = ax +b đi qua hai điểm A (-1;-2 ) và B ( 3;-1
Từ pt đường thẳng d tìm được, hãy tìm phương trình đường thẳng d’ song song với d ?
Lời giải:
Vì $A, B\in (d)$ nên:
\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2=-a+b\\ -1=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{4}\\ b=\frac{-7}{4}\end{matrix}\right.\)
Vậy PTĐT $(d)$ là: $y=\frac{1}{4}x-\frac{7}{4}$
PTĐT $(d')$ song song với $(d)$ có dạng: $y=\frac{1}{4}x+m$ với $m\neq \frac{-7}{4}$
Cho (d₁): y = 3x - 2 và (d₂): y = \(-\dfrac{2}{3}x\)
a) Tìm tọa độ giao điểm A của (d₁) và (d₂).
b) Viết pt đường thẳng (d) đi qua A và song song với (d₃): y = x-1
a: Phương trình hoành độ giao điểm là:
\(3x-2=-\dfrac{2}{3}x\)
=>\(3x+\dfrac{2}{3}x=2\)
=>\(\dfrac{11}{3}x=2\)
=>\(x=2:\dfrac{11}{3}=\dfrac{6}{11}\)
Khi x=6/11 thì \(y=-\dfrac{2}{3}\cdot\dfrac{6}{11}=-\dfrac{4}{11}\)
Vậy: \(A\left(\dfrac{6}{11};-\dfrac{4}{11}\right)\)
b: Đặt (d): y=ax+b
Vì (d)//(d3) nên a=1 và b<>-1
=>(d): y=x+b
Thay x=6/11 và y=-4/11 vào (d), ta được:
\(b+\dfrac{6}{11}=-\dfrac{4}{11}\)
=>\(b=-\dfrac{4}{11}-\dfrac{6}{11}=-\dfrac{10}{11}\)
Vậy: (d): \(y=x-\dfrac{10}{11}\)
Cho đường thẳng d: 2x - y + 10 =0 và điểm M(1; -3)
a) Tính khoảng cách từ điểm M đến đường thẳng d
b) Viết pt đường thẳng đi qua M và vuông góc với đường thẳng d
c) Viết pt tiếp tuyến với đường tròn (C): (x-2)2 + (y-3)2 =9 biết rằng tiếp tuyến đó song song với đường thẳng d
d) Cho ∆ABC biết tọa độ trực tâm H(2;2). Tâm đường tròn ngoại tiếp ∆ABC là điểm I(1;2). Xác định tọa độ các điểm A, B, C biết trung điểm của BC là điểm M(1;1) và hoành độ điểm B âm
Viết phương trình đường thẳng (d)
A, (d) đi qua m (-2;5) là vuông góc với (d1) y=(-1 )/2x+2
B, (d) song song đường thẳng (d1) y=-3+4 và đi qua giao điểm của 2 đường thẳng (d2) y=2x-3 và (d3) y=3x-7/2
a: (d) vuông góc (d1)
=>a*(-1/2)=-1
=>a=2
=>(d): y=2x+b
Thay x=-2 và y=5 vào (d), ta được:
b-4=5
=>b=9
b:
Sửa đề: (d1): y=-3x+4
Tọa độ giao của (d2) và (d3) là:
3x-7/2=2x-3 và y=2x-3
=>x=1/2 và y=1-3=-2
(d)//(d1)
=>(d): y=-3x+b
Thay x=1/2 và y=-2 vào (d), ta được:
b-3/2=-2
=>b=1/2
=>y=-3x+1/2