chứng minh rằng n≥2;n∈N ta có:
1/2!+5/3!+11/4!+...+(n^2+n-1)/(n+1)!<2
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
Chứng minh rằng A= 111...(n số 1) 222...(n số 2)chứng minh rằng đây là tích 2 số tự nhiên liên tiếp
vd:
12=3.4
1122=33.34
111222=333.334
11112222=3333.3334
...
=> A=111...(n số 1)222...(n số 2) là tích 2 stn liên tíêp
dặt 111.....1(n số 1)=a=>10^n=9a+1
=>A=a.10^n+2a=a(9a+1)+2a=9a^2+a+2a=9a^2+3a=3a(3a+1)
a=3333.........3(n thửa số 3).33333333..34(n-1 thừa số 3)
Câu 4:
a. Chứng minh rằng: \(\sqrt{22-12\sqrt{2}}\) + \(\sqrt{6+4\sqrt{2}}\) = 4\(\sqrt{2}\)
b. Chứng minh rằng: \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) = \(\sqrt{n+1}\) - \(\sqrt{n}\)
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
a;chứng minh rằng tích của 2 số tự nhiên liên tiếp chia hết cho 2
b;chứng minh rằng A=N^2+N+1 không chia hết 2 và N
a. Vì hai số tự nhiên liên tiếp sẽ có một số chia hết cho 2 nên tích bất kì hai số tự nhiên liên tiếp nào cũng chia hết cho 2.
b. Ví dụ n = số chẵn ( 2 )
22 + 2 + 1 = 7 ko chia hết cho 2 và 2 ( n )
Ví dụ n = số lẻ ( 7 )
72 + 7 + 1 = 57 ko chia hết cho 2 và 7
Vậy nên A = n2 + n + 1 ko chia hết cho 2 và n
a/ Tích của 2 số tự nhiên liên tiếp là tích của 1 số lẻ với 1 số chẵn nên có kết quả là chẵn => chia hết cho 2
b/
+ Nếu N lẻ => N2 lẻ => N2+N chẵn => N2+N+1 lẻ => không chia hết cho 2
+ \(\frac{N^2+N+1}{N}=N+1+\frac{1}{N}\left(N\ne0\right)\)
A không chia hết cho N trừ \(N=\pm1\)
Giúp mình làm mấy bài chứng minh này nhé . Ai có câu trả lời hay nhất mình sẽ like cho !!!!
Chứng minh rằng : 29992013 - 19982012 - 10032013 chia hết cho 2 và 5
Chứng minh rằng : n ( n + 1 ) ( 2n + 1) chia hết cho 2 và 3
Chứng minh rằng : ab - ba chia hết cho 9 với a > b
Chứng minh rằng : ( n+ 10 ) ( n + 15 ) chia hết cho 2
Chứng minh rằng : abcabc chia hết cho 7 ; 11 ; 13
Chứng minh rằng : 21132000 - 20112000 chia hết cho 2 và 5
Chứng minh rằng : 998 - 662 chia hết cho 2 và 5
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
Bài 2: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 3: Chứng minh rằng: n3+5n chia hết cho 6
Bài 4: Chứng minh rằng: (n+20122013).(n+20132012) chia hết cho 2
Bài 5: Chứng tỏ rằng
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé.
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38