Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thiên Hương
Xem chi tiết
Nguyễn Minh Quang
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Khách vãng lai đã xóa
Thuy Linh Nguyen
Xem chi tiết
Đinh Đức Hùng
27 tháng 7 2017 lúc 15:32

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

Võ Hồng Phúc
Xem chi tiết
Thục Trinh
Xem chi tiết
Akai Haruma
4 tháng 3 2019 lúc 0:27

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

Akai Haruma
4 tháng 3 2019 lúc 0:30

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

Akai Haruma
4 tháng 3 2019 lúc 0:32

Bài 3:

Ta thấy:

\(2x-x^2+7=8-(x^2-2x+1)=8-(x-1)^2\leq 8, \forall x\in\mathbb{R}\)

\(\Rightarrow 2+\sqrt{2x-x^2+7}\leq 2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow B=\frac{3}{2+\sqrt{2x-x^2+7}}\geq \frac{3}{2+2\sqrt{2}}\)

Vậy GTNN của $B$ là \(\frac{3}{2+2\sqrt{2}}\).

Đẳng thức xảy ra tại \((x-1)^2=0\Leftrightarrow x=1\)

Qasalt
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 22:33

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

nguyen ngoc son
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2021 lúc 19:49

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)

Võ Hồng Phúc
Xem chi tiết
Nguyễn Văn Tuấn Anh
23 tháng 8 2019 lúc 14:47

ĐKXĐ:

 \(\sqrt{x-5}\ge0\Rightarrow x\ge5\)

\(\sqrt{7-x}\ge0\Rightarrow x\le7\)

=> Pmax =2 tại x=7

Cặp mắt xanh
23 tháng 8 2019 lúc 16:47

DKXD:\(5\le x\le7\)

GTLN: \(P=\sqrt{x-5}+\sqrt{7-x}=1.\sqrt{x-5}+1.\sqrt{7-x}\)

                                  \(\le\frac{1^2+\left(\sqrt{x-5}\right)^2}{2}+\frac{1^2+\left(\sqrt{7-x}\right)^2}{2}\left(bdtCOSI\right)\)

                                    \(=\frac{2+x-5+7-x}{2}=2\)

                       "="\(\Leftrightarrow\hept{\begin{cases}1=\sqrt{x-5}\\1=\sqrt{7-x}\\7\ge x\ge5\end{cases}}\Leftrightarrow x=6\)

Vậy..............................................................

GTNN: ta sẽ chứng minh: \(P\ge\sqrt{2}\)

 bđt có thể viết lại thành:\(\sqrt{x-5}+\sqrt{7-x}\ge\sqrt{2}\Leftrightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2\ge\left(\sqrt{2}\right)^2\)

                                       \(\Leftrightarrow x-5+7-x+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\Leftrightarrow2+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\)

                                       \(\Leftrightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}\ge0\)(đúng với mọi x thỏa mãn \(7\ge x\ge5\))

          "="\(\Leftrightarrow\hept{\begin{cases}2\sqrt{\left(x-5\right)\left(7-x\right)}\\7\ge x\ge5\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=7\end{cases}}}\)

                      Vậy..........

I love BTS
Xem chi tiết
thuan doan
5 tháng 3 2019 lúc 21:10

a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra

<=>x=2

b) Min A =2019<=>Dấu ''='' xảy ra

<=>2x-5=0

<=>x=5/2

Nguyễn Đăng Minh Tú
5 tháng 3 2019 lúc 21:33

nnznznxk