Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Hân Hà
Xem chi tiết
Trần Quốc Đại Nghĩa
9 tháng 5 2018 lúc 4:50

ko biết klàm nha 

Hoang Linh
Xem chi tiết
Nhã Doanh
10 tháng 8 2018 lúc 21:41

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)

\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)

\(Cauchy-Schwarz:\)

\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)

\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

\(AM-GM:\)

\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)

\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

Akai Haruma
10 tháng 8 2018 lúc 23:16

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Bao Nguyen Trong
Xem chi tiết
Lê Thành Đạt
Xem chi tiết
Kiệt Cao
Xem chi tiết
Monkey D Luffy
Xem chi tiết
TNA Atula
2 tháng 2 2018 lúc 21:55

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

=> (a+b).\(\left(\dfrac{1}{b}+\dfrac{1}{b}\right)\ge\left(a+b\right).\dfrac{4}{a+b}=4\left(dpcm\right)\)

b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+b+c}\)

=>\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\left(dpcm\right)\)

Trần Đặng Xuân Quyên
Xem chi tiết
Yim Yim
12 tháng 6 2018 lúc 20:13

áp dụng bất đẳng thức cauchy cho hai số dương

\(1+b^2\ge2\sqrt{1\cdot b^2}=2b\)

\(1+c^2\ge2c\)

\(1+a^2\ge2a\)

\(\Rightarrow a\cdot\left(1+b^2\right)+b\cdot\left(1+c^2\right)+c\cdot\left(1+a^2\right)\ge2ab+2bc+2ca\)

Nguyễn Thu Hằng
Xem chi tiết
Trần Huỳnh Thanh Long
3 tháng 8 2017 lúc 20:56

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.


 

Đặng Tuấn Anh
Xem chi tiết
Thắng Nguyễn
15 tháng 3 2017 lúc 22:09

Cách khác: Áp dụng BĐT AM-GM ta có: 

\(1+\frac{1}{a}=\frac{1}{a}\left(a+b+c+a\right)\ge\frac{1}{4}4\sqrt[4]{a^2bc}\)

\(\Rightarrow1+\frac{1}{a}\ge\frac{4}{a}\sqrt[4]{\frac{a^4bc}{a^2}}=4\sqrt[4]{\frac{bc}{a^2}}\)

Tương tự cũng có: \(1+\frac{1}{b}\ge4\sqrt[4]{\frac{ca}{b^2}};1+\frac{1}{c}\ge4\sqrt[4]{\frac{ab}{c^2}}\)

\(\Rightarrow VT\ge4\sqrt[4]{\frac{bc}{a^2}}4\sqrt[4]{\frac{ca}{b^2}}4\sqrt[4]{\frac{ab}{c^2}}=64\)

Còn tỷ tỷ cách đây cần thì IB nhé !!

Thắng Nguyễn
15 tháng 3 2017 lúc 22:07

Ta cần chứng minh \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(\Leftrightarrow1+abc+ab+bc+ca+a+b+c\ge1+3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}+abc\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}\)

Đúng theo BĐT AM-GM. Thật vậy ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\)

\(\ge\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}\ge64\).Từ \(a+b+c=1\Rightarrow abc\le\frac{1}{27}\)

\(\Rightarrow\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\frac{1}{\sqrt[3]{abc}}+1\right)^3\ge64\)

Đẳng thức xảy ra khi a=b=c=1/3