Tìm x,y,z thuộc Z sao cho:x+y+z=xyz
\(Cho:x,y,z\ge0.CMR:\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\)
Áp dụng BĐT Cosi cho 3 số dương x,y,z ta có:
\(x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\)
Dấu "=" xảy ra khi x=y=z
bạn ơi giải cách khác đi mình chưa học BĐT cô si
Tìm x,y,z thuộc N* sao cho xyz -x-y-z=5
Cho:x,y,z khác 0 thỏa (x+y+z)2=x2+y2+z2
CMR:1/x3+1/y3+1/z3=3/xyz
\(\left(x+y+z\right)^2=x^2+y^2+z^2\\ \Leftrightarrow xy+yz+xz=0\\ \Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Đặt
\(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\\ vìa+b+c=0\\ \Rightarrow a^3+b^3+c^3=3abc\\ \Rightarrow\left(\dfrac{1}{x}\right)^3+\left(\dfrac{1}{y}\right)^3+\left(\dfrac{1}{z}\right)^3=\dfrac{3}{xyz}\)
Tìm x,y,z thuộc Z biết:
xyz=x+2015
xyz=y+2017
xyz=z+2019
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
tìm x,y,z thuộc Z biết
xyz=y+2015
xyz=x+2017
xyz=z+2019
cho x,y,z thuộc Q tìm x,y,z biết xyz>x+y+z
Tìm x+y+z (x,y,z thuộc N* biết: x+y+z=xyz
Tìm x,y,z thuộc Z biết:
4(x+y+z)=xyz
Tìm x,y,z thuộc N* sao cho xyz-x-y-z=5
không mất tính tổng quát, giả sử \(0< a\le b\le c\in N\)
\(xyz=x+y+z+5\le3z+5\Leftrightarrow xy\le3+\dfrac{5}{z}\le8\)
mà x,y thuộc N* \(\Rightarrow xy\in\left\{1;2;3;4;5;6;7;8\right\}\)
...bla bla