1. Không dùng máy tính hãy so sánh: \(A=\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}va20\)
Không dùng máy tính hãy cm
A= \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}+\sqrt{72}+\sqrt{90}+\sqrt{110}< 60\)
Không dùng mtct, hãy so sánh
A=\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
B=\(\sqrt{196}-\dfrac{1}{\sqrt{3}}-1\)và c=\(\sqrt{169}+\dfrac{-1}{\sqrt{2}}\)
M=\(\sqrt{61-35}\)vàN=\(\sqrt{61}-\sqrt{35}\)
Không dùng máy tính hãy so sánh
a, \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}\) và 12
b, \(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)và \(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Không dùng máy tính hãy so sánh: \(\sqrt{6}\)+ \(\sqrt{12}\)+ \(\sqrt{30}\)+ \(\sqrt{56}\)và 19
\(19=2,5+3,5+5,5+7,5\)
\(=\sqrt{6,25}+\sqrt{12,25}+\sqrt{30,25}+\sqrt{56,25}\)
> √6 + √12 + √30 + √56
Không dùng máy tính, hãy so sánh:
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}\)và -44
so sánh\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
Không dùng máy tính, hãy so sánh \(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)
\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
2017>2015
=>căn 2017>căn 2015
=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)
=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)
Không dùng máy tính hãy so sánh P với 20
\(P=\sqrt{102-2\sqrt{101}}+\sqrt{103+2\sqrt{101}}\)
\(P=\sqrt{101-2\sqrt{101}+1}+\sqrt{101+2\sqrt{101}+1+1}\)
\(=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}>\sqrt{101}-1+\sqrt{101}+1=2\sqrt{101}>2.\sqrt{100}=2.10=20\)
=> P > 20
So sánh: A= \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\) và B= 24
\(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)
\(A< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=24=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~