Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyn duy anh
Xem chi tiết
Riio Riyuko
13 tháng 5 2018 lúc 20:51

Xét n > 9 , ta có 

\(S=2^9+2^{13}+2^n=2^9\left(1+2^{13}+2^{n-9}\right)\)

Vì \(\left(1+2^{13}+2^{n-9}\right)\)lẻ nên S chia hết cho 29 nhưng không chia hết cho 210 nên không là số chính phương

Xét n < 0 , ta có 

\(S=2^9+2^{13}+2^n=2^n\left(1+2^{13-n}+2^{9-n}\right)\)

Vì \(\left(1+2^{13-n}+2^{9-n}\right)\) lẻ mà S là số chính phương nên 2n là số chính phương => n chẵn => \(n\in\left\{2;4;6;8\right\}\)

Khi đó , S là số chính phương , 2n là số chính phương => \(\left(1+2^{13-n}+2^{9-n}\right)\) là số chính phương

Số chính phương lẻ luôn có chữ số tận cùng là 1,9,5 

Ta xét từng trường hợp nhưng nhận thấy không có trường hợp nào thõa mãn 

Vậy với n = 9 thì ............

物理疾驰
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Yeutoanhoc
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Đỗ Thanh Tùng
Xem chi tiết
alibaba nguyễn
4 tháng 2 2017 lúc 19:19

Ta có:

\(A=2^9+2^{13}+2^n\)

Xét \(n\ge9\)ta có

\(A=2^9\left(1+2^4+2^{n-9}\right)\)

A chia hết cho 29 nên A phải chia hết cho 210 (vì A là số chính phương).

\(\Rightarrow1+2^4+2^{n-9}\)là số chẵn 

\(\Rightarrow2^{n-9}\)là số lẻ

\(\Rightarrow n-9=0\)

\(\Rightarrow n=9\)

Thế ngược lại ta được: \(A=2^9+2^{13}+2^9=9216\)(đúng)

Xét \(n\le8\)thì ta có.

\(A=2^9+2^{13}+2^n=2^n\left(2^{9-n}+2^{13-n}+1\right)\)

Dễ thấy thừa số trong ngoặc luôn là số lẻ nên A sẽ không thể là số chính phương được

Vậy n = 9 thì A là số chính phương 

Nguyeenc Chí Cao
18 tháng 6 2018 lúc 8:51

Không hiểu

Bên nhau trọn đời
Xem chi tiết
Nguyễn Minh Quang
10 tháng 10 2021 lúc 7:48

ta có :

undefined

Khách vãng lai đã xóa
doraemon
Xem chi tiết
cfefwe
Xem chi tiết
ducquang050607
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
9 tháng 9 2023 lúc 23:49

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

Quyên Bùi Hà
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Khách vãng lai đã xóa
Linhhhhhh
Xem chi tiết