Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đình Nguyên
Xem chi tiết
Dangthybgggg
Xem chi tiết
Bùi Anh Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 9:57

\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)

Để A>B thì A-B>0

=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)

=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)

=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)

=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)

TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)

TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Dangthybgggg
Xem chi tiết
Thủy Thu-
Xem chi tiết
Akai Haruma
4 tháng 5 2023 lúc 0:32

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

nguyễn thanh nga
Xem chi tiết
Nguyễn Trọng Hiếu
Xem chi tiết
Hà Quang Minh
12 tháng 8 2023 lúc 16:51

\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)

Hà Quang Minh
12 tháng 8 2023 lúc 16:53

\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)

Nguyễn Trọng Hiếu
12 tháng 8 2023 lúc 16:56

Mình cám ơn Hà Quang Minh rất nhiều

Trần Dương Gaming
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2023 lúc 23:32

Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=3\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{5x+1}=a\\\sqrt{5y+1}=b\\\sqrt{5z+1}=c\end{matrix}\right.\)  \(\Rightarrow1\le a;b;c\le4\)

Đồng thời \(a^2+b^2+c^2=5\left(x+y+z\right)+3=18\)

Do \(1\le a\le4\Rightarrow\left(a-1\right)\left(4-a\right)\ge0\Rightarrow5a\ge a^2+4\)

\(\Rightarrow a\ge\dfrac{a^2+4}{5}\)

Tương tự: \(b\ge\dfrac{b^2+4}{5}\) ; \(c\ge\dfrac{c^2+4}{5}\)

Cộng vế: \(a+b+c\ge\dfrac{a^2+b^2+c^2+12}{5}=6\)

\(\Rightarrow A_{min}=6\) khi \(\left(a;b;c\right)=\left(1;1;4\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị