Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Daisy
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:27

a: Xét tứ giác BCKI có

BI//KC

BI=KC

Do đó: BCKI là hình bình hành

mà \(\widehat{IBC}=90^0\)

nên BCKI là hình chữ nhật

Thục Quyên
Xem chi tiết
Trần Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 20:49

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

b: BC=10cm

AH=4,8cm

BH=3,6cm

CH=6,4cm

Thảnh TẠ
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:28

a: Xét ΔHAB có 

M là trung điểm của HB
I là trung điểm của HA

Do đó: MI là đường trung bình của ΔAHB

Suy ra: MI//AB

hay AIMB là hình thang

an lê duy
Xem chi tiết

a.

Do M là trung điểm BH, I là trung điểm AH

\(\Rightarrow IM\) là đường trung bình tam giác ABH

\(\Rightarrow IM||AB\Rightarrow ABMI\) là hình thang

b.

Cũng do IM là đường trung bình tam giác ABH \(\Rightarrow IM=\dfrac{1}{2}AB\)

Mà E là trung điểm CD \(\Rightarrow CE=\dfrac{1}{2}CD\)

Do ABCD là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB||CD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}IM=CE\\IM||CD\end{matrix}\right.\) \(\Rightarrow IMCE\) là hình bình hành

c.

Do \(\left\{{}\begin{matrix}IM||AB\left(cmt\right)\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow IM\perp BC\)

Lại có \(BH\perp AC\Rightarrow BH\perp IC\)

\(\Rightarrow M\) là giao điểm 2 đường cao của tam giác IBC

\(\Rightarrow M\) là trực tâm tam giác ABC

\(\Rightarrow CM\) là đường cao thứ 3 hay \(CM\perp IB\)

Lại có \(CM||IE\) (do IMCE là hbh)

\(\Rightarrow IE\perp IB\Rightarrow\Delta IBE\) vuông tại I

\(\Rightarrow IG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow IG=\dfrac{1}{2}BE\) 

\(\Delta BCE\) vuông tại C có \(CG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow CG=\dfrac{1}{2}BE\)

\(\Rightarrow CG=IG\) hay tam giác ICG cân tại G

d.

Từ K hạ \(KF\) vuông góc đường thẳng CD (F thuộc đường thẳng CD)

\(\Rightarrow KF||BC\) (cùng vuông góc CD)

\(\Rightarrow\widehat{BKF}=\widehat{HBC}\) (đồng vị) (1)

Lại có \(\widehat{HBC}=\widehat{BAC}\) (cùng phụ \(\widehat{ACB}\)) (2)

\(\widehat{BAC}=\widehat{CDB}\) (tính chất hình chữ nhật) (3)

Từ (1);(2);(3) \(\Rightarrow\widehat{BKF}=\widehat{CDB}\) (4)

Mà \(\left\{{}\begin{matrix}BK=AC\left(gt\right)\\AC=BD\left(\text{hai đường chéo hcn}\right)\end{matrix}\right.\) 

\(\Rightarrow BK=BD\Rightarrow\Delta BDK\) cân tại B

\(\Rightarrow\widehat{BKD}=\widehat{BDK}\) (5)

(4);(5) \(\Rightarrow\widehat{BKF}+\widehat{BKD}=\widehat{CDB}+\widehat{BDK}\)

\(\Rightarrow\widehat{FKD}=\widehat{FDK}\)

\(\Rightarrow\Delta DKF\) vuông cân tại F

\(\Rightarrow\widehat{FDK}=45^0\) hay \(\widehat{KDC}=45^0\)

loading...

NHI NHi
Xem chi tiết
Lil Shroud
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 11:59

a) Xét ΔHAB có 

M là trung điểm của AH(gt)

O là trung điểm của BH(gt)

Do đó: MO là đường trung bình của ΔHAB(Định nghĩa đường trung bình của tam giác)

\(\Leftrightarrow\)MO//AB và \(MO=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AB//CK(AB//CD, K\(\in\)CD)

và AB=CD(hai cạnh đối trong hình chữ nhật ABCD)

nên MO//CK và \(MO=\dfrac{CD}{2}\)

mà \(CK=\dfrac{CD}{2}\)(K là trung điểm của CD)

nên MO//CK và MO=CK

Xét tứ giác MOCK có 

MO//CK(cmt)

MO=CK(cmt)

Do đó: MOCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

 

Dương Huệ Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2022 lúc 20:21

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

Đào Thị Khánh Hiền
Xem chi tiết