Bài 1. Cho hình chữ nhật ABCD. Gọi I, K lần lượt là trung điểm của các cạnh AB, CD
a) Chứng minh BIKC là hình chữ nhật
b) Vẽ BH ⊥ AC (H ∈ AC). Gọi M, O và lần lượt là trung điểm của các cạnh AH, IC. Chứng minh MO = \(\dfrac{1}{2}\) IC.
Cho hình chữ nhật ABCD (AB > AD). Gọi I, K lần lượt là trung điểm của AB, CD. Hạ BH AC. Gọi O là giao điểm của BK và CI. M là trung điểm của AH.
a) Chứng minh BCKI là hình chữ nhật
b) Chứng minh MO = IC/2
a: Xét tứ giác BCKI có
BI//KC
BI=KC
Do đó: BCKI là hình bình hành
mà \(\widehat{IBC}=90^0\)
nên BCKI là hình chữ nhật
Cho hình chữ nhật ABCD, vẽ BH vuông góc AC (H thuọc AC). Gọi M, K lần luợt là trung điểm của AH vàDC ; I,O lần lượt là trung điểm của AB và IC
a) Chứng minh IC=KB và MO=1/2IC
b) Tính số đo góc BMK?
Cho tam giác ABC vuông tại A có đường cao AH, AB=6cm,AC=8cm . Gọi D và E lần lượt là hình chiếu vuông góc của H lên AB và AC. Gọi I, K lần lượt là trung điểm của HB, HC.
a) Chứng minh tứ giác ADHE là hình chữ nhật
b) Tính độ dài các đoạn AH, BH, CH
c) Chứng minh tứ giác DEKI là hình thang vuông và tính diện tích.
d) Tính diện tích hình chữ nhật ADHE
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
b: BC=10cm
AH=4,8cm
BH=3,6cm
CH=6,4cm
Bài 5. Cho hình chữ nhật ABCD. Kẻ BH vuông AC (HE thuộc AC). Các điểm I, M, E lần lượt là trung điểm của AH, BH và CD.
a) Chứng minh tứ giác ABMI là hình thang.
b) Chứng minh tứ giác IMCE là hình bình hành.
c) Gọi G là trung điểm của BE. Chứng minh M là trực tâm của tam giác IBC từ đó chứng minh tam giác IGC là tam giác cân.
giúp evs mn ơi!
a: Xét ΔHAB có
M là trung điểm của HB
I là trung điểm của HA
Do đó: MI là đường trung bình của ΔAHB
Suy ra: MI//AB
hay AIMB là hình thang
Bài 2. Cho hình chữ nhật ABCD. Kẻ BH vuông AC (HE thuộc AC). Các điểm I, M, E lần lượt là trung điểm của AH, BH và CD.
a) Chứng minh tứ giác ABMI là hình thang.
b) Chứng minh tứ giác IMCE là hình bình hành.
c) Gọi G là trung điểm của BE. Chứng minh M là trực tâm của tam giác IBC từ đó chứng minh tam giác IGC là tam giác cân.
d) trên tia đối của tia BH lấy điểm K sao cho BK=AC tính góc KDC
giúp mình với làm ơn
a.
Do M là trung điểm BH, I là trung điểm AH
\(\Rightarrow IM\) là đường trung bình tam giác ABH
\(\Rightarrow IM||AB\Rightarrow ABMI\) là hình thang
b.
Cũng do IM là đường trung bình tam giác ABH \(\Rightarrow IM=\dfrac{1}{2}AB\)
Mà E là trung điểm CD \(\Rightarrow CE=\dfrac{1}{2}CD\)
Do ABCD là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB||CD\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}IM=CE\\IM||CD\end{matrix}\right.\) \(\Rightarrow IMCE\) là hình bình hành
c.
Do \(\left\{{}\begin{matrix}IM||AB\left(cmt\right)\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow IM\perp BC\)
Lại có \(BH\perp AC\Rightarrow BH\perp IC\)
\(\Rightarrow M\) là giao điểm 2 đường cao của tam giác IBC
\(\Rightarrow M\) là trực tâm tam giác ABC
\(\Rightarrow CM\) là đường cao thứ 3 hay \(CM\perp IB\)
Lại có \(CM||IE\) (do IMCE là hbh)
\(\Rightarrow IE\perp IB\Rightarrow\Delta IBE\) vuông tại I
\(\Rightarrow IG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow IG=\dfrac{1}{2}BE\)
\(\Delta BCE\) vuông tại C có \(CG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow CG=\dfrac{1}{2}BE\)
\(\Rightarrow CG=IG\) hay tam giác ICG cân tại G
d.
Từ K hạ \(KF\) vuông góc đường thẳng CD (F thuộc đường thẳng CD)
\(\Rightarrow KF||BC\) (cùng vuông góc CD)
\(\Rightarrow\widehat{BKF}=\widehat{HBC}\) (đồng vị) (1)
Lại có \(\widehat{HBC}=\widehat{BAC}\) (cùng phụ \(\widehat{ACB}\)) (2)
\(\widehat{BAC}=\widehat{CDB}\) (tính chất hình chữ nhật) (3)
Từ (1);(2);(3) \(\Rightarrow\widehat{BKF}=\widehat{CDB}\) (4)
Mà \(\left\{{}\begin{matrix}BK=AC\left(gt\right)\\AC=BD\left(\text{hai đường chéo hcn}\right)\end{matrix}\right.\)
\(\Rightarrow BK=BD\Rightarrow\Delta BDK\) cân tại B
\(\Rightarrow\widehat{BKD}=\widehat{BDK}\) (5)
(4);(5) \(\Rightarrow\widehat{BKF}+\widehat{BKD}=\widehat{CDB}+\widehat{BDK}\)
\(\Rightarrow\widehat{FKD}=\widehat{FDK}\)
\(\Rightarrow\Delta DKF\) vuông cân tại F
\(\Rightarrow\widehat{FDK}=45^0\) hay \(\widehat{KDC}=45^0\)
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
Cho hình chữ nhật ABCD. Vẽ BH ⊥ AC tại H. Gọi M, O, K lần lượt là trung điểm của AH, BH và CD. Tia CO cắt MB tại E. Tia MO cắt EH và BC lần lượt tại F và N
a, Tứ giác MOCK là hình gì
b, Chứng minh MK ⊥ MB
c, Chứng minh NE . FH = FE . NH
p/s: help em câu c với ạ
a) Xét ΔHAB có
M là trung điểm của AH(gt)
O là trung điểm của BH(gt)
Do đó: MO là đường trung bình của ΔHAB(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow\)MO//AB và \(MO=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AB//CK(AB//CD, K\(\in\)CD)
và AB=CD(hai cạnh đối trong hình chữ nhật ABCD)
nên MO//CK và \(MO=\dfrac{CD}{2}\)
mà \(CK=\dfrac{CD}{2}\)(K là trung điểm của CD)
nên MO//CK và MO=CK
Xét tứ giác MOCK có
MO//CK(cmt)
MO=CK(cmt)
Do đó: MOCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Cho hình chữ nhật ABCD . Vẽ BH vuông góc với đường chéo AC . Gọi M,N,K lần lượt là trung điểm của AH , AB ,CD ; BK cắt AC tại I . Chứng minh góc BMK bằng 90 độ .
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
Cho tam giác ABC vuông tại A, có BC = a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên các cạnh AB và AC
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH Chứng minh góc MEF bằng 90 độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất