Tìm x thuộc Q , biết :
\(22+\left(4-5x\right)^3=\left(-5\right)^{2013}:5^{2012}\)
Tìm x thuộc Q , biết :
\(22+\left(4-5x\right)^3=\left(-5\right)^{2013}:5^{2017}\)
tìm x biết
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+12\right)\left(x+17\right)}\)
biết x không thuộc { -2 , -5 ,-10 , -17 ]
Tìm x thuộc Z biết
\(\left(x-3\right).\left(x-5\right)+2y^2=0\)
tìm x biết
a, ( 2x - 3 ) ( x + 1 ) <0
b, ( x - \(\frac{1}{2}\) ) ( x + 3) >0
c,\(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
biết không thuộc { -2, -5 ,-10 ,-17 }
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
Giải pt: \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
giải phương trình: \(\left(2x^2+x-2013\right)+4.\left(x^2-5x-2012\right)=4\left(2x^2+x-2013\right).\left(x^2-5x-2012\right)\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2\)\(=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
Giải phương trình
Đặt 2x^2 + x +2013 = a, x^2-5x+2012 = b
Ta có: a^2 + 4b^2 = 4ab
a^2 - 4ab + 4b^2 = 0
(a-2b)^2 = 0
Do đó: a = 2b
Hay: 2x^2 + x -2013 = 2(x^2 -5x -2012)
2x^2 + x -2013 = 2x^2 -10x -4024
x-2013 = -10x -4024
x+10x = -4024+2013
11x = -2011
x = -2011/11
Bạn hỏi nhiều câu hay đấy. Chúc bạn học tốt.
Giải phương trình sau: \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
Sửa tí nha kết quả cuối sai dâu phải là \(x=\dfrac{-2011}{11}\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\\ \Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+4\left(x^2-5x-2012\right)^2=0\\ \Leftrightarrow\left[2x^2+x-2013-2\left(x^2-5x-2012\right)\right]^2=0\\ \Leftrightarrow\left(11x+2011\right)^2=0\\ \Leftrightarrow11x+2011=0\\ \Leftrightarrow x=\dfrac{2011}{11}\)
Giải phương trình sau:
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)( * )
Đặt \(a=2x^2+x-2013\)
\(\)Đặt \(b=x^2-5x-2012\)
Khi đó ( * ) trở thành:
\(a^2+4b^2=4ab\)
\(\Leftrightarrow a^2+4b^2-4ab=0\)
\(\Leftrightarrow a^2-4ab+4b^2=0\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a-2b=0\)
\(\Leftrightarrow a=2b\)
\(\Leftrightarrow2x^2+x-2013=2\left(x^2-5x-2012\right)\)
\(\Leftrightarrow2x^2+x-2013-2x^2+10x+4024=0\)
\(\Leftrightarrow11x+2011=0\)
\(\Leftrightarrow x=\dfrac{-2011}{11}\)
Vậy...
đặt: \(x=2x^2+x-2013\\ y=x^2-5x-2012\), khi đó:
\(x^2+4y^2=4xy\\ \Leftrightarrow x^2-4xy+y^2=0\\ \Leftrightarrow\left(x-2y\right)^2=0\Rightarrow x-2y=0\\ \Leftrightarrow x=2y\\ \Rightarrow2x^2+x-2013=2x^2-10x-4024\)
\(\Leftrightarrow11x=-2011\\ \Leftrightarrow x=-\dfrac{2011}{11}\)
vậy ........
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
Đặt \(\left\{{}\begin{matrix}2x^2+x-2013=a\\x^2-5x-2012=b\end{matrix}\right.\) thì ta có:
\(a^2+4b^2=4ab\)\(\Rightarrow a^2+4b^2-4ab=0\)
\(\Rightarrow\left(a-2b\right)^2=0\Rightarrow a-2b\Rightarrow a=2b\)
Tức là \(2x^2+x-2013=2\left(x^2-5x-2012\right)\)
\(\Leftrightarrow2x^2+x-2013=2x^2-10x-4024\)
\(\Leftrightarrow11x+2011=0\Leftrightarrow11x=-2011\Rightarrow x=-\dfrac{2011}{11}\)