Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Hoài Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2021 lúc 18:19

1.

\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)

Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

Nguyễn Việt Lâm
18 tháng 6 2021 lúc 18:21

2.

Xét hàm \(f\left(x\right)=x^2-2x-3\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2018 lúc 12:53

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 10:42

Chọn A

Điều kiện: . Điều kiện cần để hàm số nghịch biến trên khoảng .

Ta có : .

Ta thấy .

Để ham số nghịch biến trên khoảng

 

.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 7 2019 lúc 17:58

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2019 lúc 7:41

Chọn B

f ' ( x ) = 1 - 2 s i n x c o s x = s i n 2 x + c o s 2 x - 2 . s i n x . c o s x = ( s i n x - c o s x ) 2 ≥ 0 ∀ x ∈ R

Hàm số đồng biến trên khoảng (-∞; +∞)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 5:51

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 0 <=>  2 x 4   -   1   >   0 <=> x > 1/16 => Khoảng đồng biến của hàm số là 1 16 ; + ∞

Chọn C 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2018 lúc 3:38

Chọn D

Cách1:

Ta có: .

Vậy

.

Đặt .

Vậy .

Ta có:. Vậy .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 4 2017 lúc 16:04

Lê Thúy Kiều
Xem chi tiết
Hồng Phúc
25 tháng 6 2021 lúc 9:40

1. \(D=R\)

2. \(sinx\ne0\Leftrightarrow x\ne k\pi\Rightarrow D=R\backslash\left\{k\pi|k\in R\right\}\)

3. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+\dfrac{k\pi}{2}|k\in R\right\}\)

4. \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+k\pi|k\in R\right\}\)