Giải phương trình
\(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
Bài 1: Thực hiện phép tính:
a, \(\left(\sqrt{24}-\sqrt{48}-\sqrt{6}\right)\sqrt{6}+12\sqrt{2}\)
b, \(\left(\sqrt{\dfrac{1}{5}}-\sqrt{\dfrac{16}{5}}+\sqrt{5}\right):\sqrt{20}\)
c, \(\sqrt{21+3\sqrt{48}}-\sqrt{21-3\sqrt{48}}\)
Bài 2: Giải các phương trình sau:
a, \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b, \(\sqrt{9x^2+12x +4}=4x\)
c, \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\)
GIÚP MIK VỚIIII
Bài 2:
a)\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: \(x\ge2\))
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+\dfrac{6}{\sqrt{81}}\sqrt{x-2}=-4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow-\sqrt{x-2}=-4\) \(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\) (thỏa)
Vậy...
b)\(\sqrt{9x^2+12x+4}=4x\)(Đk:\(9x^2+12x+4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge0\\9x^2+12x+4=16x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+12x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+14x-2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-2\right)\left(-7x-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=2\) (tm đk)
Vậy...
c) \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\) (đk: \(x\ge1\))
\(\Leftrightarrow x-2\sqrt{x-1}=x-1\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\) \(\Leftrightarrow x=\dfrac{5}{4}\) (tm)
Vậy...
thực hiện phép tính
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B=\(\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
\(B=\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)
\(=\left(5+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(5-2\sqrt{6}\right)\)
\(=\sqrt{3}-\sqrt{2}\)
\(\left(5+2\sqrt{6}\right)\left(49+20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
\(\left(5+2\sqrt{6}\right)\left(49+20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}=\left(5+2\sqrt{6}\right)^3\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{2}\right)^6\left(\sqrt{3}-\sqrt{2}\right)=\left(\sqrt{3}+\sqrt{2}\right)^5.1=\left(\sqrt{3}+\sqrt{2}\right)^5\)
$\left(5+2\sqrt{6}\right)\left(49+20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}
=\left(5+2\sqrt{6}\right)^3\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}
=\left(\sqrt{3}+\sqrt{2}\right)^6\left(\sqrt{3}-\sqrt{2}\right)
=\left(\sqrt{3}+\sqrt{2}\right)^5.1
=\left(\sqrt{3}+\sqrt{2}\right)^5$
\(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
\(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2.\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^4.\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right) ^3\)
\(=\left(\sqrt{3}-\sqrt{2}\right)^3\)
\(=\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(49-20\sqrt{6}\right)\)
\(\)
\(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
\(=\left(2+2\sqrt{2}\cdot\sqrt{3}+3\right)\left(25-2\cdot5\cdot\sqrt{24}+24\right)\sqrt{3-2\sqrt{3}\sqrt{2}+2}\)
\(=\left(\sqrt{2}+\sqrt{3}\right)^2\left(5-\sqrt{24}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}+\sqrt{2}\right)\)
\(=9\sqrt{3}-11\sqrt{2}\)
Giải phương trình:
\(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
Giải phương trình: \(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)10
\(pt\Leftrightarrow\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
Thấy rằng \(5-2\sqrt{6}\) là nghịch đảo của \(5+2\sqrt{6}\), Vì vậy
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=1\)
Đặt \(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}=t\) ta dc pt sau
\(t+\frac{1}{t}=10\Rightarrow t^2-10t+1=0\Rightarrow t=5\pm2\sqrt{6}\)
Vì vậy \(t=5\pm2\sqrt{6}=\left(5-2\sqrt{6}\right)^{\pm1}=\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\)
Suy ra \(\frac{x}{2}=\pm1\Rightarrow x=\pm2\)
Tính:
\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Bạn tham khảo
https://hoc24.vn/cau-hoi/rut-gonfracleft52sqrt6rightleft49-20sqrt6rightsqrt5-2sqrt69sqrt3-11sqrt2.227145517764
Giải phương trình
\(\sqrt{\left(5+2\sqrt{6}\right)^x}+\sqrt{\left(5-2\sqrt{6}\right)^x}=10\)