Tìm x biết
a) (x-3)2 - 4 = 0
b) (2x-1)2 + (x+3)2 - 5(x+7)(x-7) = 0
Tìm x, biết:
a, (x-3)^2-4=0
b, x^2-2x=24
c,(2x-1)^2+(x+3)^2-5(x+7)(x-7)=0
b/ x2-2x=24
=> x2-2x-24=0
=> (x-6)(x+4)=0
=>x=6 hoặc x =-4
a/ (x-3)2 - 4 = 0
=> (x-3-2)(x-3+2)=0
=> (x-5)(x-1)=0
=> x = 5 hoặc x=1
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
tìm x a)(x+4)^2-(x+1)(x-1)=0 b)(2x-1)^2+(x+3)^2-5(x+7)=0 c)3(x-7)+(5-x)=2^3(x-1)
xem lại câu b
a)(x+4)^2-(x+1)(x-1)=0
<=>x2+8x+16-(x2-1)=0
<=>x2+8x+16-x2+1=0
<=>8x+17=0
<=>8x=-17
<=>x=-17/8
c)3(x-7)+(5-x)=2^3(x-1)
<=>3x-21+5+x=8x-8
<=>3x+x-8x=-8-5+21
<=>-4x=8
<=>x=-2
Bài 3 : Tìm x Z biết.
a) x(x + 2) = 0 e) 7x – 13 = 3 2 .4
b) 5 – 2x = -7 f) 155 – 5(x + 3) = 80
c) (x + 3)(x – 4) = 0 g) 119 + 3 3 .x = 2 3 . 5 2
d) – 32 – 4(x – 5) = 0 h) 3(2x + 1) – 19 = 14
x(x+2)=0
suy ra x=0 hoặc x+2=0
5-2x=-7
2x=-7+5
2x=-(7-5)
2x=-2
x=-2:2
x=-1
Vậy x=-1
NHỚ TÍCH MK NHA
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
Tìm x biết:
a,(2x+3/5)^2-9/25=0
b,(3x-1).(-1/2x+5)=0
c, (7/5)^x+1-(1/5)^x=-4/625
d,(2/3)^x+2+(2/3)^x+1=20/27
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(=>2x+\frac{3}{5}=\frac{3}{5}\)
\(2x=\frac{3}{5}-\frac{3}{5}\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)
=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)và\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.
\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=0+\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
b) \(\left(3x-1\right)\left(-\frac{1}{2}x+5\right)=0\)
\(\left(3x-1\right)\left(-\frac{x}{2}+5\right)=0\)
\(\left(3x-1\right)\left(5-\frac{x}{2}\right)=0\)
\(\orbr{\begin{cases}3x-1=0\\5-\frac{x}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
tìm x biết
a) (5x-1)(2x-1/3)=0
b) (x^2+1)(x-4)=0
c) 2x^2 -1/3x=0
d) (4/5)^5.x=(4/5)^7
e)Tìm x thuộc z để A=x+5/x-2 có giá trị nguyên
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Tìm x,biết
a) ( x+2)×(x+3)-(x -2)×(x+5)=0
b) (2x+3)×(x-4)+(x-5)×(x-2)=(3x-5)×(x-4)
c) (8-5x)×(x+2)+4(x-2)×(x+1)+2(x-2)×(x+2)=0
d) (8x-3)×(3x+2)-(4x+7)×(x+4)=(2x+1)×(5x-1)-33
Tìm x biết
a ) ( 2x - 1 ) . ( 5x + 2 ) = 0
b ) 3/7 + 3/7 : x = -1/2 - ( -3/4 )
c ) ( 3x + 5 ) . ( 2x - 3 ) < 0
a) <=> 2x - 1 = 0 hoặc 5x + 2 = 0
<=> 2x = 1 hoặc 5x = -2
<=> x = \(\frac{1}{2}\) hoặc x = \(-\frac{2}{5}\)
b) <=> 3/7 . (1 + 1/x) = 1/4
=> 1 + 1/x = 7/12 <=> 1/x = -5/12
<=> -5/-5x = -5/12 <=> -5x = 12
<=> x = \(-\frac{12}{5}\)
c) Dễ thấy 3x + 5 > 2x - 3
Để (3x + 5)( 2x - 3) < 0 thì 3x + 5 > 0 và 2x - 3 < 0
<=> x > -5/3 và x < 3/2
Vậy \(-\frac{5}{3}< x< \frac{3}{2}\)
a) (2x-1).(5x+2) = 0
\(\Leftrightarrow\) 2x-1 = 0 hoặc 5x+2 = 0
\(\Leftrightarrow\) 2x = 1 hoặc 5x = -2
\(\Leftrightarrow\) x = \(\frac{1}{2}\) hoặc x = \(\frac{-2}{5}\)
b) \(\frac{3}{7}+\frac{3}{7}:x=\frac{-1}{2}-\left(\frac{-3}{4}\right)\)
\(\frac{3}{7}+\frac{3}{7}:x=\frac{-1}{2}+\frac{3}{4}\)
\(\frac{3}{7}+\frac{3}{7}:x=\frac{1}{4}\)
\(\frac{3}{7}:x=\frac{1}{4}-\frac{3}{7}\)
\(\frac{3}{7}:x=\frac{-5}{28}\)
\(x=\frac{3}{7}:\frac{-5}{28}\)
\(x=\frac{-12}{5}\)
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !