Tìm số : \(\overline{xy}\) biết \(\overline{xy}.\overline{xyx}=\overline{xyxy}\)
Tìm số có hai chữ số \(\overline{xy}\)
Biết rằng : \(\overline{xyxy}\) =\(\overline{xy^2}\) +\(\overline{yx^2}\)
Kiểm tra giùm nha! cảm ơn trước
Hình như thầy cho đề sai : \(\overline{xxyy}=\overline{xx}^2+\overline{yy}^2\)mới đúng ko chắc nha
Ta có:
\(\overline{xyxy}\)=\(\overline{xy}\).100+\(\overline{xy}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).101
Mà theo bài ra ta có:
\(\overline{xyxy}\)=\(\overline{xy^2}\)+\(\overline{yx^2}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
\(\Rightarrow\)101=\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
Đến đây mk chịu,còn ko biết đúng ko nữa,mk đăng cho bn xem đúng ko thôi.
Khả năng sai cực cao
Tìm \(\overline{xy}\) thỏa
xyxy =\(xy^2+yx^2\)
1) Tìm \(\overline{xy}th\text{ỏa}:\overline{xxyy}=\overline{xx}^2+\overline{yy}^2\)
Tìm x,y biết:
x+y=9 \(\overline{xy}+\overline{yx}=99\) và \(\overline{0,xy\left(x\right)}+\overline{0,yx\left(y\right)}=0,4\left(5\right)\)
Tìm \(\overline{xy}\) biết :
\(\overline{1234xy345}⋮12345\)
Tím số tự nhiên có 2 chữ số \(\overline{xy}\)biết ràng 2 chữ số đó hơn kém nhau 2 đơn vị và \(\overline{xxyy}\)\(=\overline{xx}^2+\overline{yy}^2\)
Tìm số tự nhiên có hai chữ số dạng \(\overline{xy}\left(x,y\in N,0< x\le9,0\le y\le9\right)\) để \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
1) \(Cho2.\overline{xy}+1v\text{à}3.\overline{xy}+1l\text{à}S\text{ố}ch\text{ính}ph\text{ươ}ng.T\text{ìm}\overline{xy}\)
* 2xy + 1 =n2(1)
3xy+1=m2(2)
(1) => 2xy chia hết cho 8 => xy chia hết cho 4
(2)=>3xy chia hết cho 8 mà (3;8)=1 => xy chia hết cho 8
*(1)+(2)
=> 5xy +2=m2+n2
VP chia 5 dư 2 => m2+n2 chia 5 dư 2 => m2 và n2 chia 5 dư 1
=>xy chia hết cho 5
(8;5)=1
=>xy chia hết cho 40
1)tìm \(\overline{xy}\)biết \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)
Ta có: \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)
\(\Leftrightarrow2\left(10x+y\right)=x^2+4x+4+y^2+8y+16\)
\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)
\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)
Ta thấy do x, y là các chữ số nên (x - 8)2 và (y + 3)2 đều là các số chính phương.
Ta có 53 = 49 + 4 và \(y+3\ge3\)
Vậy nên \(\hept{\begin{cases}x-8=2\\y+3=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=4\end{cases}}\left(ktmđk\right)\)
Vậy không tồn tại số cần tìm.