Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ly Trần
Xem chi tiết
HT.Phong (9A5)
7 tháng 8 2023 lúc 12:28

a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left|x-2y\right|\)

TH1: \(x-2y--\left(x-2y\right)\)

\(=x-2y+x-2y\)

\(=2x-4y\)

TH2: \(x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

b) \(x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+\left|x^2-4\right|\)

TH1: 

\(x^2+-\left(x^2-4\right)\)

\(=x^2-x^2+4\)

\(=4\)

TH2: 

\(x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)

\(=2x-1-\sqrt{x-5}\)

d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))

\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)

\(=\sqrt{x^2-2}\)

e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)

\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+1\)

TH1: 

\(x^2-4+1\)

\(=x^2-3\)

TH2:

\(-\left(x^2-4\right)+1\)

\(=-x^2+4+1\)

\(=-x^2+5\)

Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 12:18

a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)

=x-2y-|x-2y|

Khi x>=2y thì A=x-2y-x+2y=0

Khi x<2y thì A=x-2y+x-2y=2x-4y

b: \(B=x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

B=x^2+x^2-4=2x^2-4

TH2: -2<=x<=2

B=x^2+4-x^2=4

c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)

d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)

An Đinh Khánh
Xem chi tiết
@DanHee
23 tháng 7 2023 lúc 14:27

\(a,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\\ =\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\\ =\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\\=2\sqrt{2} \)

\(b,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)

\(c,=x-4+\sqrt{\left(4^2-2.4.x+x^2\right)}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4=2x-8\)    (vì \(x>4\) )

@seven 

Nhi Quỳnh
Xem chi tiết
HT.Phong (9A5)
2 tháng 11 2023 lúc 16:00

a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)

\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)

\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)

\(=-8\sqrt{2}\) 

b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=3-\sqrt{3}+\sqrt{3}-2\)

\(=1\)

c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)

\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)

\(=x-4+\sqrt{x^2-8x+16}\)

\(=x-4+\sqrt{\left(x-4\right)^2}\)

\(=x-4+\left|x-4\right|\)

\(=x-4+x-4\)

\(=2x-8\) 

e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)

\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)

\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)

\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)

\(=-a^2\)

An Đinh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 9:02

a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)

\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)

b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)

\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)

c: \(C=x-4+\left|x-4\right|\)

=x-4+x-4

=2x-8

Nguyễn Đăng Khoa
Xem chi tiết
An Thy
10 tháng 7 2021 lúc 16:25

a) \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\left(x\ne0,x\ne4\right)\)

\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x\left(x-4\right)}\right)\)

\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{\left(x+4\right)\left(x-4\right)+x+19-x^2}{x\left(x-4\right)}\)

\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{x+3}{x\left(x-4\right)}=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\dfrac{x\left(x-4\right)}{x+3}=\dfrac{x^2}{x-4}\)

b) \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1=2\)

\(\Rightarrow P=\dfrac{2^2}{2-4}=-2\)

 

ミ★ήɠọς τɾίếτ★彡
10 tháng 7 2021 lúc 16:30

a)\(ĐKXĐ:\left\{{}\begin{matrix}x\left(x-4\right)\ne0\\\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne0\\x\ne-3\end{matrix}\right.\)

\(P=\dfrac{x\left(x+3\right)}{\left(x-4\right)}:\left(\dfrac{x^2-16+x+19-x^2}{x\left(x-4\right)}\right)=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\left(\dfrac{x\left(x-4\right)}{x+3}\right)=\dfrac{x^2}{x-4}\)

b)\(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3+1}-\left(\sqrt{3}-1\right)=2\)

thay x=2 vào P ta có \(P=\dfrac{2^2}{2-4}=-2\)

Hoàng Kiệt
Xem chi tiết
hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 19:54

Ta có: \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\dfrac{8\sqrt{x}-8x+8x}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(=\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

Liên Phạm Thị
Xem chi tiết
Liên Phạm Thị
7 tháng 5 2022 lúc 12:49

mik cần gấp ạ^^

 

....
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 13:18

Ta có: \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)}{2\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{8x-8\sqrt{x}+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-2-\sqrt{x}+2}\)

\(=\dfrac{16x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{2\left(16-8\sqrt{x}\right)}{\sqrt{x}+2}\)

\(=\dfrac{32-16\sqrt{x}}{\sqrt{x}+2}\)