Tìm giá trị nhỏ nhất của các BT sau
a) 5x^2-8x+5
b)4x^2+6x+15
c)9x^2-8x+1
d)x^2+3x+7
Tìm giá trị nhỏ nhất của các BT sau
a) 5x^2-8x+5
b)4x^2+6x+15
c)9x^2-8x+1
d)x^2+3x+7
a) 5x2 - 8x + 5
= 5(x2 - 8/5.x + 1)
= 5(x2 -2.4/5.x + 16/25 + 1 - 16/25)
= 5[(x-4/5)2 + 9/25]
= 5.(x-4/5)2 + 9/5 >= 9/5. Dấu "=" xảy ra <=> x = 4/5. Vậy....
Còn lại tương tự nha bạn
TL:
a) \(5x^2-8x+5\)
\(=4x^2-8x+4+x^2+1=\left(2x-2\right)^2+x^2+1\)
Ta có : \(\left(2x-2\right)^2+x^2+1\ge1\forall x\in R\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right)^2=0\) và \(x^2=0\)
\(\Leftrightarrow x=1\) và x=0
Vậy GTNN của BT =1 tại....
b) \(4x^2+6x+15=4x^2+6x+\frac{9}{4}+\frac{51}{4}\)
\(=\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\)
Ta có: \(\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\forall x\in R\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\Leftrightarrow2x=\frac{-3}{2}\Leftrightarrow x=\frac{-3}{4}\)
Vậy GTNN của BT =\(\frac{51}{4}\) tại \(x=\frac{-3}{4}\)
Nguyễn Văn Tuấn Anh nếu x = 1 thì gtnn = 2, nếu x = 0 thì gtnn = 5 chớ.
TÌM GIÁ TRỊ LỚN NHẤT( HOẶC GIÁ TRỊ NHỎ NHẤT)
a) A= 5x^2 - 20x + 2020
b) B= -3x^2 - 6x + 15
c) C= 9x^2 + 2x + 7
d) D= 16- 2x^2 - 8x
Mình mong các bạn có thể kiểm đáp án với mình với ạ! Mình sợ sai ... :)))
a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinA = 2000 khi x = 2+
b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MaxB = 18 khi x = -1
c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x + 1/3)2 + 62/9 \(\ge\)62/9 \(\forall\)x
Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x = -1/9
Vậy MinC = 62/9 khi x = -1/9
d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy MaxD = 24 khi x = -2
( bài I.5.SBT toán 8 tập 1 trag 15) Tính giá trị lớn nhất hoặc nhỏ nhất của của các biểu thức sau:
a/ A=2x^2-8x-10
b/ B=9x-3x^2
Giải chi tiết jum tớ nhea =)) tớ tick cho, cmơn trc nha....
Bài 1 : giải các phương trình
a, 5x+35=0 b, 9x-3=0
c, 24-8x=0 d,-6x+16=0
Bài 2 : giải các phương trình
a, 7x-5=13-5x b, 13-7x=4x-20
c, 2-3x=5x+10 d, 11-9x=3-7x
Bài 3 : tìm giá trị của m sao cho phương trình sau nhận x=-3 làm nghiệm
4x+3m=3-2x
Bài 4: cho hai phương trình ẩn x :
3x+3=0 (1)
5-kx=7 (2)
tìm giá trị của k sao cho nghiệm của phương trình 1 là nghiệm của phương trình 2
Mn Giúp Mk vs Ạ
a) Tìm các giá trị nguyên của x để phân số sau nhận các giá trị nguyên:
A= 6x +9/ 3x+2
b) Tìm giá trị nhỏ nhất của biểu thức :
A=| x | + | 8-x |
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
[...]5chia hết 3x+2
3x+2thuoc tập ước của 5
[...]
\(\frac{x^2-2x+1995}{x^2}\)Điều kiện \(x\ne0\)
\(=\frac{x^2-2x+1+1994}{x^2}\)
\(=\frac{\left(x-1\right)^2+1994}{x^2}\ge1994\)
\(Min_D=1994\Leftrightarrow x=1\)
Bài 1 : Tìm giá trị nhỏ nhất của các biểu thức sau :
a, A = x2 + 3x + 4 | d, D = 4x2+ 4x - 24 |
b, B = 2x2 - x + 1 | e, E = x2 + 6x - 11 |
c, C = 5x2 + 2x - 3 | g, G = \(\dfrac{1}{4}x^2+x-\dfrac{1}{3}\) |
MONG MỌI NGƯỜI GIÚP VỚI Ạ !!! EM CẦN GẤP !
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
d: Ta có: \(D=4x^2+4x-24\)
\(=4x^2+4x+1-25\)
\(=\left(2x+1\right)^2-25\ge-25\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
e: ta có: \(E=x^2+6x-11\)
\(=x^2+6x+9-20\)
\(=\left(x+3\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=-3
Tìm giá trị lớn nhất(hoặc nhỏ nhất)của các biểu thức sau
1)A=x2-6x+11
2)B=2x2+10x-1
3)C=5x-x2
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
Ta có : A = x2 - 6x + 11
<=> A = x2 - 6x + 9 + 2
<=> A = (x - 3)2 + 2
Mà (x - 3)2 \(\ge0\forall x\)
Nên A = (x - 3)2 + 2 \(\ge2\forall x\)
Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3
1) A=x2-6x+9+2
=(x-3)2+2
vì (x-3)2>=0
=> (x-3)2+2>=2
Dấu "=" xảy ra khi
x-3=0. Vậy MinA=2 khi và chỉ khi x=3
2)HÌnh như câu B là 2x2 chứ bạn
Nếu là 2x2 thì làm như sau nhé:
B=2(x2+5x-1/2)
=2(x2+2.x.5/2 +25/4-27/4)
=2(x+5/2)2-27/2
Vì 2(x+5/2)2>=0
=> 2(x+5/2)2-27/2>=(-27/2)
Dấu bằng xảy ra khi
x+5/2=0
=> x=-5/2
KL:
3)C=5x-x2
= (5/2)2-(x2-2x.5/2+25/4)
=(5/2)2-(x-5/2)2
=> 25/4-(x-5/2)2<=25/4
Dấu bằng xảy ra khi
x=5/2
KL
(dấu >= là dấu lớn hơn hoặc bằng còn <= là dấu bé hơn hoặc bằng)
I : Tìm giá trị lớn nhất của biểu thức
a) A=5x-x^2 b) B=x-x^2 c) C= 4x-x^2+3
d) D=-x^2+6x-11 e) E=5-8x-x^2 f) F=4x-x^2+1
\(a.A=5x-x^2\)
\(=-\left(x^2-5x\right)=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\right]=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(\Rightarrow Max_A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
\(b.B=x-x^2=-\left(x^2-x\right)=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow Max_B=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(c.C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)
\(\Rightarrow Max_C=7\Leftrightarrow x=2\)
a) Ta có:
\(A=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x\right)-6,25+6,25\)
\(=-\left(x^2-5x+6,25\right)+6,25\)
\(=-\left(x-2,5\right)^2+6,25\)
Ta lại có:
\(\left(x-2,5\right)^2\ge0\)
\(\Rightarrow-\left(x-2,5\right)^2\le0\)
\(\Rightarrow-\left(x-2,5\right)^2+6,25\le6,25\)
\(\Rightarrow A\le6,25\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2,5\right)^2=0\)
\(\Leftrightarrow x-2,5=0\)
\(\Leftrightarrow x=2,5\)
Vậy MaxA = 6,25 \(\Leftrightarrow x=2,5\)
\(d.D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x-3\right)^2-2\le-2\)
\(\Rightarrow Max_D=-2\Leftrightarrow x=3\)
\(e.E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left[\left(x+4\right)^2-21\right]=-\left(x+4\right)^2+21\le21\)
\(\Rightarrow Max_E=21\Leftrightarrow x=-4\)
\(f.F=4x-x^2+1=-\left(x-4x-1\right)=-\left[\left(x-2\right)^2-5\right]=-\left(x-2\right)^2+5\le5\)
\(\Rightarrow Max_F=5\Leftrightarrow x=2\)