rút gọn biểu thức
\(\frac{1}{2a-1}\) . \(\sqrt{25a^4-100a^5+100a^6}\)
rút gọn các biểu thức sau
c,\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) d,\(5\sqrt{16a}-4\sqrt{25a}-2\sqrt{100a}+\sqrt{169a}\) với a ≥ 0
e,\(5\sqrt{4a}-4\sqrt{a^2}-\sqrt{100a}\) với a ≥ 0 f,\(3\sqrt{4a^6}-5^3\) với a ≤ 0
1/2a-1.\(\sqrt{25a^{\text{4}}-100a^5+100a^6}\)
Mysterious Person giups mik vs Mysterious Person
\(\frac{1}{2a-1}.\sqrt{25a^4-100a^5+100a^6}\)
= \(\frac{1}{2a-1}.\sqrt{25a^4\left(1-4a+4a^2\right)}\)
= \(\frac{1}{2a-1}.5a^2\sqrt{\left(1-2a\right)^2}\)
= \(\frac{5a^2}{2a-1}.\left(1-2a\right)\)
= \(-5a^2\)
b1 rút gọn pt
a, \(\frac{1}{11xy}\)\(\sqrt{\frac{121x^2}{y^6}}\) vs x <0, y>0
b,\(3y^2\)\(\sqrt{\frac{x^6}{9y^2}}\) vs y>0
c,\(\frac{2}{x^2-y^2}\)\(\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}\) vs x khác +-y
d,\(\frac{1}{2a-1}\)\(\sqrt{25a^4-100a^5+100a^6}\) vs a khác \(\frac{1}{2}\)
Rút gọn biểu thức: P=\(\dfrac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}\)với a>0
\(P=\dfrac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}=\dfrac{9\sqrt{a}-5\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}=\dfrac{4\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}=\dfrac{2\sqrt{a}\left(2+a\right)}{a\left(2+a\right)}=\dfrac{2\sqrt{a}}{a}=\dfrac{2.\sqrt{a}}{\sqrt{a}.\sqrt{a}}=\dfrac{2}{\sqrt{a}}\)
B1 rút gọn phương trình
a, \(\frac{1}{11xy}\).\(\sqrt{\frac{121x^2}{y^6}}\) vs x <0,y>0
b, \(3y^2\)\(\sqrt{\frac{x^6}{9y^2}}\) vs y>0
c, \(\frac{2}{x^2-y^2}\)\(\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}\) vs x khác y, x khác -y
d, \(\frac{1}{2a-1}\)\(\sqrt{25a^4-100a^5+100a^6}\) vs a khác \(\frac{1}{2}\)
B3 Giải pt:
a,\(\sqrt{10\left(x-3\right)}\)=\(\sqrt{26}\)
b,\(\sqrt{3x^2}\)= x+2
c,\(\sqrt{x^2+6x+9}\)= 3x-6
B4: cho 3 số dương x,y,z thỏa mãn điều kiện: x.y+y.z+x.z=1. Tính tổng:
S= x\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\)+ y\(\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}\)+z\(\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
Rút gọn biểu thức
Giải nhanh giúp mk nha!Thanks <3
1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)
bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi
\(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a) Rút gọn biểu thức trên.
b) Tìm a để biểu thức trên = \(\frac{\sqrt{6}}{1+\sqrt{6}}\)
c) Chứng minh rằng biểu thức trên > \(\frac{2}{3}\)
\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)
\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)
\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)
Cho biểu thức:\(Q=\frac{2}{\:2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\)
a) Rút gọn biểu thức Q.
b) Tìm x để \(Q=\frac{6}{5}\)
\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)
\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)
\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)
Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.