Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thanh Ngân
Xem chi tiết
huynh thi huynh nhu
20 tháng 6 2019 lúc 7:57

Phép nhân và phép chia các đa thức

Trần Thanh Phương
20 tháng 6 2019 lúc 8:01

a) \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

Từ đây ta có đpcm

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b\)

Tami Hiroko
Xem chi tiết
huynh van duong
Xem chi tiết
tth_new
Xem chi tiết
tth_new
6 tháng 6 2020 lúc 6:30

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

Khách vãng lai đã xóa
Đào Minh Trí
24 tháng 9 lúc 20:36

Hello


Tami Hiroko
Xem chi tiết
lê duy mạnh
29 tháng 9 2019 lúc 20:33

=(a-b)(b-c)(c-a)

Lê Tài Bảo Châu
29 tháng 9 2019 lúc 20:34

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left[\left(b-a\right)-\left(c-a\right)\right]+ca\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(ab-bc\right)-\left(c-a\right)\left(bc-ca\right)\)

\(=b\left(a-b\right)\left(a-c\right)-c\left(c-a\right)\left(b-a\right)\)

\(=b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

Cô bé hạnh phúc
Xem chi tiết
CR7 victorious
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 22:26

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)

My Hà
Xem chi tiết
Thương Nguyễn Thị Xuân
Xem chi tiết