Nếu \(\left(\text{a}+b+c\right)^2=3\left(\text{a}b+bc+c\text{a}\right)\) thì \(\text{a}=b=c\)
CMR:
a/\(a^2+b^2+c^2\ge\text{ab}+bc+c\text{a}\)
b/\(3\left(\text{a}b+bc+c\text{a}\right)\le\left(\text{a}+b+c\right)^2\le3\left(\text{a}^2+b^2+c^2\right)\)
c/\(\text{a}^3+b^3\ge\text{a}b\left(\text{a}+b\right)\)
a) \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
Từ đây ta có đpcm
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b\)
phan tích nhan tử thanh nhan tử:
a)\(3x^2-12y^2\)
b)\(5xy^2-10xyt+5xt^2\)
c)\(x^3+3x^2+3x+1-27x^3\)
d)\(\text{a}^3x-\text{a}b+b-x\)
e)\(3x^2\left(\text{a}+b+c\right)+36xy\left(\text{a}+b+c\right)+108y^2\left(\text{a}+b+c\right)\)
f)\(\text{a}b\left(\text{a}-b\right)+bc\left(b-c\right)+c\text{a}\left(c-\text{a}\right)\)
g)\(\left(\text{a}+b+c\right)^3-\text{a}^3-b^3-c^3\)
h)\(4\text{a}^2b^2-\left(\text{a}^2+b^2-c^2\right)^2\)
Cho 3 sô dương a,b,c . Chứng mình rằng
\(\sqrt[3]{\frac{\left(a\text{+}b\right)\left(b\text{+}c\right)\left(c\text{+}a\right)}{abc}}\ge\frac{4}{3}\left(\frac{a^2}{a^2\text{+}bc}\frac{b^2}{b^2\text{+}ab}\frac{c^2}{c^2\text{+}ac}\right)\)
Mấy bạn giúp mình câu này với ;-;
Mạnh mẽ hơn Nesbitt?
Với a, b, c là các số thực sao cho: \(a+b+c>0,\text{ }ab+bc+ca>0,\text{ }\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\) thì:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\ge\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)-\frac{9}{4}\)
Chứng minh: \(4\left(a+b+c\right)\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\cdot\left(\text{VT}-\text{VP}\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left[\Sigma\left(ab+bc-2ca\right)^2+\left(ab+bc+ca\right)\Sigma\left(a-b\right)^2\right]\)
\(+\left(a+b+c\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)
Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?
phan tích da thuc thanh nhan tu
\(\text{a}b\left(\text{a}-b\right)+bc\left(b-c\right)+c\text{a}\left(c-\text{a}\right)\)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left[\left(b-a\right)-\left(c-a\right)\right]+ca\left(c-a\right)\)
\(=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(ab-bc\right)-\left(c-a\right)\left(bc-ca\right)\)
\(=b\left(a-b\right)\left(a-c\right)-c\left(c-a\right)\left(b-a\right)\)
\(=b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)
Cho các số thực không âm a,b,ca,b,c thoả mãn a+b+c=1a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le\sqrt{3}+\left(1-\frac{\sqrt{3}}{2}\right)\left(\text{|
}a-b\text{|
}\right)+\text{|
}b-c\text{|
}+\text{|
}c-a\text{|
}.\)
Chứng minh rằng với a+b+c=0 thì\(a^4\text{+}b^4+c^4=2\left(ab\text{+}bc\text{+}ac\right)^2\)
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)
Rút gọn C=\(\dfrac{\text{ a^2b+b^2c+c^2a-ab^2-bc^2-ca^2}}{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}\)
bài 1: cho a, b,c là các số nguyên dương.cm
a) (a,b,c)=\(\frac{\left(a,b,c\right)\left(abc\right)}{\left(a,b\right)\left(b,c\right)\left(c,a\right)}\)
b)[a,b,c]=\(\frac{\left(a,b,c\right)\text{[}a,b\text{]}\text{\text{[}}b,c\text{]}\text{]}c,a\text{]}}{abc}\)\(\frac{\left(a,b,c\right)\left[a,b\right]\left[b,c\right]\left[a,c\right]}{abc}\)
bài 2: Cho a1;a2;...;an là các số nguyên dương và n > 1. Đặt
A=a1.a2....an; Ai=\(\frac{\text{A}}{ai}\)(i=1,n )
Chứng minh các đẳng thức sau:
a)(a1,a2,....,an)[A1,A2,...An]=A
b)[a1,a2,...,an](A1,A2,...An)=A