Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐẶNG QUỐC SƠN
Xem chi tiết
đinh khánh ngân
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Khách vãng lai đã xóa
Nguyễn Huy Tú
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Khách vãng lai đã xóa
Hoài Thu Vũ
Xem chi tiết
Akai Haruma
13 tháng 7 2023 lúc 0:01

Lời giải:
1. Áp dụng BĐT Cô-si

$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$

$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$ 

Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$

$\Leftrightarrow x=0$ hoặc $x=2$

 

Akai Haruma
13 tháng 7 2023 lúc 0:03

2.

Áp dụng BĐT Cô-si:

$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$

$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)

Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
 

Akai Haruma
13 tháng 7 2023 lúc 0:05

3.

Áp dụng BĐT Cô-si:

$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$

$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)

Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$

Hoàng Bảo Trân
Xem chi tiết
Nguyễn Tiến Đạt
23 tháng 12 2018 lúc 9:52

dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)

(Chú ý  phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta) 

Nếu \(\Delta\ge0\)thì pt có 2 nghiệm 

Nếu \(\Delta< 0\)thì pt vô nghiệm

         Bài làm

Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)

Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)

=>m(x2+x+1)=x2-x+1

=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)

Nếu m=0..............(th này ko phải xét)

Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)

\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)

\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)

\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)

=> có 2 TH 

TH1: m-3\(\le0\)\(3m-1\ge0\)

=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)

TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)

Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)

=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)

Từ đây bạn tách ngược từ dưới lên.

Nếu ko biết thì nhắn tin cho mk ,mk tách cho

tk mk nha

Trần_Hiền_Mai
11 tháng 2 2019 lúc 20:56

tôi đâu có rảnh

Sakura Kinomoto
Xem chi tiết
Phan Thanh Tịnh
21 tháng 9 2016 lúc 23:02

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Cristiano Ronaldo
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

nguyen nguyet anh
Xem chi tiết
roronoa zoro
Xem chi tiết
Đặng Viết Thái
23 tháng 3 2019 lúc 20:24

a, ko bít làm

b,ko bít lun

roronoa zoro
23 tháng 3 2019 lúc 20:26

Bị sàm à

Mấy bài này cũng đơn giản bạn cố gắng lên nhé 

Tớ mong bạn sẽ làm được 

Cố lên !

Khách vãng lai đã xóa
Nguyễn Văn Trà My
Xem chi tiết
Quỳnh Anh
2 tháng 3 2021 lúc 17:08

Trả lời:

1, A = | x - 3 | + 10 

Vì \(\left|x-3\right|\ge0\forall x\)

nên \(\left|x-3\right|+10\ge10\forall x\)

Dấu = xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của A = 10 khi x = 3

B = -7 + ( x + 1 )2 

Vì \(\left(x+1\right)^2\ge0\forall x\)

nên \(-7+\left(x+1\right)^2\ge-7\forall x\)

Dấu = xảy ra khi x + 1 = 0 <=> x = -1

Vậy GTNN của B = -7 khi x = -1

2, C = -3 - | x + 2 | 

Vì \(\left|x+2\right|\ge0\forall x\)

=> \(-\left|x+2\right|\le0\forall x\)

=> \(-3-\left|x+2\right|\le-3\forall x\)

Dấu = xảy ra khi x + 2 = 0 <=> x = -2

Vậy GTLN của C = -3 khi x = -2

D = 15 - ( x - 2 )2

VÌ \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2\le0\forall x\)

=> \(15-\left(x-2\right)^2\le15\forall x\)

Dấu = xảy ra khi x - 2 = 0 <=> x = 2

Vậy GTLN của D = 15 khi x = 2

Khách vãng lai đã xóa
Law Trafargal
Xem chi tiết
tthnew
29 tháng 9 2019 lúc 13:30

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

tthnew
29 tháng 9 2019 lúc 13:34

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

Cao Thị Bích Ngọc
11 tháng 1 2021 lúc 18:30

Tìm GTNN của biểu thức sau:

B=\(\dfrac{-8+11}{x^2+5}\)    \(D=\dfrac{x^2-2x+2}{x^2+x+1}\)

\(C=\dfrac{-4x-1}{2x^2+1}\)