B=\(\frac{3}{2}\)x2+x+1
=\(\frac{3}{2}\)(x2+\(\frac{2}{3}\)x)+1
=\(\frac{3}{2}\)(x2+2.\(\frac{1}{3}\)x+\(\frac{1}{9}\))+1-\(\frac{3}{2}.\frac{1}{9}\)
=\(\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Dấu = xảy ra khi : \(\frac{3}{2}\left(x+\frac{1}{3^{ }}\right)^2=0\)
\(\Rightarrow x=-\frac{1}{3}\)
Vậy Min B=\(\frac{5}{6}\)\(\Leftrightarrow x=-\frac{1}{3}\)