Giải hệ pt 2x+y = 40 và 2x-y = 12
Giải hệ pt 2x+y=126 y-x= 12
y-x=12 <=> y = x+12
2x+y=126 <=> 2x + x + 12=126
<=> 3x+12=126
<=> x = 38
<=> y = 50
\(\left\{{}\begin{matrix}2x+y=126\\y-x=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=114\\y-x=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=50\end{matrix}\right.\)
Giải các hệ pt
a/ x+y = 4 và x^2*y + y^2*x = 12
b/ 2x+y=1 và 3x^2 - y^2 - xy +2x - 3y +14=0
bạn ê làm bài gì trong lhó thế
giải ra x=1,y-1 Nhưng viết trên đây khó quá @_@
Bài tập : Giải các hệ pt
a/ x+y = 4 và x^2*y + y^2*x = 12
b/ 2x+y=1 và 3x^2 - y^2 - xy +2x - 3y +14=0
Bài 1: Giải hệ PT \(\left\{{}\begin{matrix}\dfrac{1}{2x-2}-\dfrac{1}{y-1}=2\\\dfrac{3}{2x-2}-\dfrac{2}{y-1}=1\end{matrix}\right.\)
Bài 2 : Cho hệ PT \(\left\{{}\begin{matrix}2x+y=1\\x-my=m\end{matrix}\right.\)( m là tham số )
a) Tìm đk của m để hệ PT có nghiệm duy nhất
b) Tìm m để hệ có nghiệm thỏa mãn x > 0 và y > -1
Bài 3 : Cho hệ PT \(\left\{{}\begin{matrix}mx-y=2\\x+my=5\end{matrix}\right.\)( m là tham số )
Tìm m để hệ PT có nghiệm thỏa mãn x + y= 1 - \(\dfrac{m^2}{m^2+1}\)
Bài 1:
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))
Hệ trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)
Trả lại ẩn của hệ pt:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)
giải hệ pt a)2x+3y=5 và 4x-5y=1
b)xy-x-y=3 và x^2+y^2-xy=1
c)x+2y+3z=4 và 2x+3y-4z=-3 và 4x+y-z=-4
a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)
1) Cho hệ phương trình:
(k+1)x + (3k+1)y = 2-k
(2x + (k+2)y = 4. Tìm k để x và y thuộc Z
2) giải pt
a) x² - 4x - 6= √2x²-8x-12
b) (4x+1)(12x-1)(3x+2)(x+1)=4
2)
a) ĐK: \(2x^2-8x-12\ge0\)(1)
Nhân 2 cả hai vế ta có:
\(2x^2-8x-12=2\sqrt{2x^2-8x-12}\)
Đặt: \(\sqrt{2x^2-8x-12}=t\left(t\ge0\right)\)
Ta có phương trình: \(t^2=2t\Leftrightarrow\orbr{\begin{cases}t=0\\t=2\end{cases}}\)(tm)
+) Với t=0 ta có:\(\sqrt{2x^2-8x-12}=0\Leftrightarrow2x^2-8x-12=0\Leftrightarrow x^2-4x-6=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}\)( thỏa mãn đk (1))
+) Với t=2 ta có: \(\sqrt{2x^2-8x-12}=2\Leftrightarrow2x^2-8x-12=4\Leftrightarrow x^2-4x-8=\Leftrightarrow\orbr{\begin{cases}x=2+2\sqrt{3}\\x=2-2\sqrt{3}\end{cases}}\)( THỎA MÃN đk (1))
vậy ...
b) pt <=> \(\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)=4\)
<=> \(\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)
Đặt :\(12x^2+11x+2=t\)
Ta có pt: \(t\left(t-3\right)=4\Leftrightarrow t^2-3t-4=0\Leftrightarrow\orbr{\begin{cases}t=4\\t=-1\end{cases}}\)
Với t=4 ta có: ....
Với t=-1 ta có:...
Em tự làm tiếp nhé
2x+ 5y=1
2x+y=-4 Giải hệ pt
trừ 2 vế ta đc: \(\Leftrightarrow\int^{2x+5y=1}_{4y=5}\Leftrightarrow\int^{x=-\frac{21}{8}}_{y=\frac{5}{4}}\)
giải hệ pt :
\(\frac{x+3}{9}+\frac{2x-y}{12}=4và\frac{2x-5y}{3}-\frac{3x-7}{11}=-55\)