bài 1: M =(2-x-1/2x-3):(6x+1/2x^2-x-3+x/x+1)
đk(x>=0; x khác 3/2)
a, rút gọn M
b, chứng minh :M<3/2
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\) (GHI RÕ ĐK)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\) (GHI RÕ ĐK)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\) (GHI RÕ ĐK)
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10
Tìm đk của x để giá trị của bt được xác định chứng minh rằng với đk đó bt ko phụ thuộc vào biến
a) 1/x-1 - x^3-x / x^2+1.(x/x^2-2x+1 - 1/x^2-1)
b)x / 6-x+( x / x^2-36 - x-6 / x^2+6x ) : 2x-6 / x^2+ 6x
a: \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x\left(x+1\right)-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{x^2+x-x+1}{x-1}\)
\(=\dfrac{1-x}{x-1}=-1\)
b: \(\dfrac{x}{6-x}+\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x^2+6x}\)
\(=\dfrac{x}{6-x}+\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{x^2-x^2+12x-36}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{12\left(x-3\right)}{2\left(x-3\right)\left(x-6\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{6}{x-6}=\dfrac{-x+6}{x-6}=-1\)
bài 1: tính
a. ( x^3 - 8):( x^2 + 2x + 4)
b. ( 3x^2 - 6x ):( 2- x )
bài 2: cho biểu thức A = 2x - 1/(phần) x^2 - x
a, tìm điều kiện để A có nghĩa
b, tính giá trị của A khi x=0 Và X = 3
bài 3: rút gọn biểu thức
a, (6x + 1)^2 + (6x - 1)^2 - 2(1+6x).(6x - 1)
b, 3(2^2 + 1).(2^4 + 1).(2^8 + 1).(2^16 +1)
c,x(2x^2 - 3) -x^2(5x + 3) + 3x^2
d,3x(x - 2)- 5x (1 - x) -8(x^2 -3)
mấy bạn giải dùm mình 3 bài này vs bài nào cx đk mình cần gấp lắm mai thi rùi huhu...
Bài 1.
a) ( x3 - 8) : ( x2 + 2x + 4 )
= ( x - 2)( x2 + 2x + 4 ) : ( x2 + 2x + 4 )
= x - 2
b) ( 3x2 - 6x ) : ( 2 - x)
= 3x( x - 2) : ( 2 - x)
= -3x( 2 - x ) : ( 2 - x)
= - 3x
Bài 2 .
\(\dfrac{2x-1}{x^2-x}\)
a) Để A có nghĩa tức là A xác định :
ĐKXĐ : x( x - 1) # 0
=> x # 0 ; x # 1
Vậy,...
b) Vì : x = 0 không thỏa mãn ĐKXĐ nên tại x = 0 giá trị của A không xác định
Vì : x = 3 thỏa mãn ĐKXĐ nên ta thay x = 3 vào A , ta có :
\(A=\dfrac{2.3-1}{3^2-3}=\dfrac{5}{6}\)
Vậy , tại : x = 3 thì A = \(\dfrac{5}{6}\)
Bài 3 .
a) ( 6x + 1)2 + ( 6x - 1)2 - 2( 1 + 6x )( 6x - 1)
= ( 6x + 1)2 - 2( 1 + 6x )( 6x - 1) + ( 6x - 1)2
= ( 6x + 1 - 6x + 1)2
= 1
b) 3( 22 + 1)( 24 + 1)( 28 + 1)( 216 + 1)
= ( 22 - 1)( 22 + 1)( 24 + 1)( 28 + 1)( 216 + 1)
= ( 24 - 1)( 24 + 1)( 28 + 1)( 216 + 1)
= ( 28 - 1)( 28 + 1)( 216 + 1)
= ( 216 - 1)( 216 + 1)
= 232 - 1
c) x( 2x2 - 3) - x2( 5x + 3 ) + 3x2
= 2x3 - 3x - 5x3 - 3x2 + 3x2
= - 3x3 - 3x
d) 3x( x - 2) - 5x( 1 - x) - 8( x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= -11x + 24
Bài 1: Tính:
a) x2(x-2x3); b) (x2+1)(5-x); c) (x-2)(x2+3x-4); d) (x-2)(x-x2+4); e) (x2-1)(x2+2x); f) (2x-1)(3x+2)(3-x)
Bài 2: Tính:
a) (x-2y)2; b) (2x2+3)3; c) (x-2)(x2+2x+4); d) (2x-1)3
Bài 3: Rút gọn biểu thức:
a) (6x+1)2+(6x-1)2-2(1+6x)(6x-1); b) 3(22+1)(24+1)(28+1)(216+1); c) x(2x2-3)-x2(5x+1)+x2; d) 3x(x-2)-5x(1-x)-8(x2-3)
Bài 4: Tính nhanh:
a) 1012; b) 97.103; c) 772+232+77.46; d) 1052-52; e) A= (x-y)(x2+xy+y2)+2y3 tại x= \(\dfrac{2}{3}\) và y= \(\dfrac{1}{3}\)
Bạn chú ý đăng lẻ câu hỏi! 1/
a/ \(=x^3-2x^5\)
b/\(=5x^2+5-x^3-x\)
c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)
d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)
e/ \(=x^4-x^2+2x^3-2x\)
f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
2) \(\dfrac{2x-1}{5-3x}=2\)
3) \(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
4) \(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
mng giúp mk bài này vs. Cảm ơn bạn nhiều
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
Tìm x
a) 5x(x+1)-5(x+1)(x-2) =0
b)(4x+1)( x-2 )- (2x-3) =4
c) 2x^3-18x =0
d) (3x-2)(2x+1)-6x(x+2) =11
e) (x-1)^3-(x+2)(x^2-2x+4) =3(1-x^2)
f) 6x^2-(2x+5)(3x-2) =-1
^( mũ)
Thanks trước nhoa
a) Ta có: \(5x\left(x+1\right)-5\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[5x-5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x-5x+10\right)=0\)
\(\Leftrightarrow10\left(x+1\right)=0\)
mà \(10\ne0\)
nên x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(4x+1\right)\left(x-2\right)-\left(2x-3\right)=4\)
\(\Leftrightarrow4x^2-8x+x-2-2x+3-4=0\)
\(\Leftrightarrow4x^2-9x-3=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}-\frac{129}{16}=0\)
\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{129}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{9}{4}=\frac{\sqrt{129}}{4}\\2x-\frac{9}{4}=-\frac{\sqrt{129}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{9+\sqrt{129}}{4}\\2x=\frac{9-\sqrt{129}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{129}}{8}\\x=\frac{9-\sqrt{129}}{8}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{9+\sqrt{129}}{8};\frac{9-\sqrt{129}}{8}\right\}\)
c) Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
mà \(2\ne0\)
nên \(\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;3\right\}\)
d) Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)
\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)
\(\Leftrightarrow-13x-2=11\)
\(\Leftrightarrow-13x=13\)
hay x=-1
Vậy: x=-1
e) Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+8\right)=3-3x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8-3+3x^2=0\)
\(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow3x=12\)
hay x=4
Vậy: x=4
f) Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-1\)
\(\Leftrightarrow6x^2-\left(6x^2-4x+15x-10\right)+1=0\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10+1=0\)
\(\Leftrightarrow-11x+11=0\)
\(\Leftrightarrow-11x=-11\)
hay x=1
Vậy: x=1
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bài 3 : Tìm x biết
a) (x-2)^2-x(x-3)=0
b) (x+3)(2x+1)-2(x-1)^2=0
c) (4x-5)^2=9(2-5x)^2
d) X^2-6x-13=0
e) (x+2)(x^2-2x+4)-x(x^2+2)=15
f) X^3-6x^2+12x-19=0
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)