Giải Phương Trình: \(\sqrt{a^2+\frac{x^2}{4}}=\frac{x}{2tanx}\)
giải phương trình: \(\sqrt{3}\left(cosx+2tanx\right)+sinx=\frac{3}{cosx^2}\)
ĐKXĐ: ...
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=\dfrac{3}{2}\left(1+tan^2x\right)-\sqrt{3}tanx\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=\dfrac{3}{2}\left(tanx-\dfrac{\sqrt{3}}{3}\right)^2+1\)
\(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)\le1\\\dfrac{3}{2}\left(tanx-\dfrac{\sqrt{3}}{3}\right)^2+1\ge1\end{matrix}\right.\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)=1\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
Giải phương trình
\(\frac{sin3x}{cos3x}-\frac{cosx}{cos2x}=\sqrt{2}\frac{tan^2x+2tanx-1}{1-tan^2x}\)
a) Giải phương trình: \(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)
b) Giải hệ phương trình \(\hept{\begin{cases}2x+3+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
Giải phương trình sau :
\(\frac{4}{x^2}+\frac{x^2}{4-x^2}+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(pt\Leftrightarrow\left(\frac{4}{x^2}+\frac{x^2}{4-x^2}\right)+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)^2-1+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
Đặt \(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}=t\)pt thành
\(t^2-1+\frac{5}{2}t+2=0\)\(\Rightarrow\orbr{\begin{cases}t=-2\\t=-\frac{1}{2}\end{cases}}\)(loại)
-->PT vô nghiệm
Thắng Nguyễn \(\frac{4}{x^2}\) . T làm ra r , you k cần làm nữa đâu , thanks :))
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Giải phương trình : \(2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-4=\frac{2}{\sqrt{x^2+1}}\)
\(2\left(\sqrt{\frac{x^2+x+1}{x+4}}-1\right)+x^2-3=\frac{2}{\sqrt{x^2+1}}-1\)
\(\Leftrightarrow2\frac{\frac{x^2+x+1}{x+4}-1}{\sqrt{\frac{x^2+x+1}{x+4}}+1}+x^2-3=\frac{4-\left(x^2+1\right)}{\left(2+\sqrt{x^2+1}\right)\sqrt{x^2+1}}\)
\(\Leftrightarrow\frac{2\left(x^2-3\right)}{\sqrt{\left(x+4\right)\left(x^2+x+1\right)}+x+4}+x^2-3=\frac{3-x^2}{\left(2\sqrt{x^2+1}\right)\sqrt{x^2+1}}\)
\(\Leftrightarrow\left(x^2-3\right)\left(\frac{2}{\sqrt{\left(x+4\right)\left(x^2+x+1\right)}+x+4}+1+\frac{1}{\left(2+\sqrt{x^2+1}\right)\sqrt{x^2+1}}\right)=0\)
................................................................
(Cũng không chắc _-_ )
bạn làm đúng rồi đấy, mình đăng cho vuii thôi :)))
Giải phương trình
\(\sqrt[4]{(x-1)^2} - \sqrt[4]{(x+1)^2} = \frac{3}{2} \sqrt[4]{x^2 -1}\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{5}{\sqrt{x}-2}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x}-2}-\frac{3-x-y}{x+y}=\frac{7}{2}\end{cases}}\)
giải phương trình :
a)\(\sqrt{\frac{6}{2-x}}+\sqrt{\frac{10}{3-x}}=4\)4
b)\(x^2-3x-5\times\sqrt{9x^2+x-2}\)=\(\frac{11}{4}-\frac{28}{9}x\)
mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu