rút gọn các biểu thức sau A = Cot anpha + Sin anpha / 1 + Cos anpha
Chứng minh Các hệ thức
1. 1+cot anpha/1-cot anpha=
= tan anpha +1/tan anpha -1
2. Sin^2 anpha -cos^2anpha + +cos^4 anpha/cos^2anpha -sin^2 anpha+sin^4anpha=tan^4anpha
a. cho góc nhọn anpha, biết sin anpha=2/3 . tinh cos anpha, tan anpha, cot anpha
b.cho tan anpha + cot anpha = 3. tinh gia tri bieu thuc a= sin anpha x cos anpha
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
1. Cho sin anpha =0,4.Tính cos anpha,tan anpha,cot anpha
2.Cho tam giác ABC vuông tại A. Cho sinB = 1/2. Tính các tỉ số lượng giác còn lại
\(\sin\alpha=\frac{2}{5}\)
\(\Rightarrow\cos\alpha=\sqrt{1-\sin^2\alpha}\)
\(=\sqrt{1-\frac{4}{25}}\)
\(=\sqrt{\frac{21}{25}}=\)\(\frac{\sqrt{21}}{5}\)
\(\Rightarrow\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{5}:\frac{\sqrt{21}}{5}=\frac{2}{\sqrt{21}}\)và \(\cot\alpha=\frac{\sqrt{21}}{2}\)
2. Tương tự a)
\(\cos B=\sqrt{1-\sin^2B}\)
\(=\sqrt{1-\frac{1}{4}}\)
\(=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
\(\tan B,\cot B\)bạn tự tính nốt.
\(sin\alpha=0,4\Rightarrow sin^2\alpha=0,16\Rightarrow cos^2\alpha=1-sin^2\alpha=1-0,16=0,84\Rightarrow cos\alpha=\frac{\sqrt{21}}{5}\)
\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,4}{\frac{\sqrt{21}}{5}}=\frac{2\sqrt{21}}{21}\)
\(cot\alpha=1:sin\alpha=1:\frac{2\sqrt{21}}{21}=\frac{21}{2\sqrt{21}}\)
Cho góc nhọn nập biết cos anpha- sin anpha= 1/5 Tính cot a
tìm tỉ số lượng giác còn lại của góc nhọn anpha biết:
a) sin anpha = √3 /2
b) cot anpha = √3
c) cos anpha = 3/5
d) tan anpha - 1/2
Tính:
A=sin^2anpha + cos^3anpha - tan anpha
Biết cot anpha =2/3
ko bt làm xuống lớp 8 đê
\(tana\cdot cota=1\)
\(tana\cdot\frac{2}{3}=1\)
\(tana=\frac{3}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+\left(\frac{3}{2}\right)^2=\frac{1}{cos^2a}\)
\(1+\frac{9}{4}=\frac{1}{cos^2a}\)
\(\frac{13}{4}=\frac{1}{cos^2a}\)
\(cos^2a=\frac{4}{13}\)
\(cosa=\frac{2\sqrt{13}}{13}\) ( cấp 2 nên chỉ lấy cos dương )
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{4}{13}=1\)
\(sin^2a=\frac{9}{13}\)
\(sin^2a+cos^3a-tana\)
\(=\frac{9}{13}+\frac{4\sqrt{13}}{13}-\frac{3}{2}\)
\(=\frac{18}{26}+\frac{8\sqrt{13}}{26}-\frac{39}{26}\)
\(=\frac{-21+8\sqrt{13}}{26}\)
Cho tan \(\alpha\) + cot \(\alpha\) = 3 . Tìm tan anpha, cot anpha, sin anpha, cos anpha, cos (\(\frac{3\pi}{2}-\alpha\)), sin(\(2\pi+\alpha\)), tan\(\left(\pi-\alpha\right)\), cot\(\left(\pi+\alpha\right)\) . Với \(\alpha\) là góc nhọn
\(0< a< \frac{\pi}{2}\Rightarrow sina;cosa;tana>0\)
\(tana+\frac{1}{tana}=3\Leftrightarrow tan^2a-3tana+1=0\) \(\Rightarrow\left[{}\begin{matrix}tana=\frac{3-\sqrt{5}}{2}\\tana=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
- Với \(tana=\frac{3-\sqrt{5}}{2}\)
\(\Rightarrow cota=\frac{1}{tana}=\frac{3+\sqrt{5}}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{2}{\sqrt{18-6\sqrt{5}}}\)
\(sina=\sqrt{1-cos^2a}=\frac{2}{\sqrt{18+6\sqrt{5}}}\)
\(cos\left(\frac{3\pi}{2}-a\right)=cos\left(2\pi-\frac{\pi}{2}-a\right)=-sina=...\)
\(sin\left(2\pi+a\right)=sina=...\)
\(tan\left(\pi-a\right)=-tana=...\)
\(cot\left(\pi+a\right)=cota=...\)
TH2: \(tana=\frac{3+\sqrt{5}}{2}\)
Tương tự như trên
Cho cos anpha= 1/5. Tính tan anpha và cot anpha
\(1+tan^2a=\dfrac{1}{cos^2a}=\dfrac{1}{\dfrac{1}{25}}=25\)
=>tan2a=24
hay \(tana=2\sqrt{6}\)
=>cot a=căn 6/12
BIẾT COS ANPHA =0,4.TÍNH SIN ANPHA ,TG ANPHA ,COTG ANPHA
-_- cái này là lượng giác mà khó quá, sin alpha thì dùng công thức sin^2 alpha+cos^2 alpha=1
mấy cái kia quên r