Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lemon Candy
Xem chi tiết
_ Hiro
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2021 lúc 21:49

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

Nguyễn Thị Huệ
Xem chi tiết
Lý Quốc Bảo
19 tháng 1 2016 lúc 19:17

1/ khi m=3 ta có

x+3y=3

3x+4y=7

<=>x=3-3y

      3(3-3y)+4y=7

<=>x=3-3y

      3y+4y=7

<=>x=3-3y

      7y=7

==>y=1

<=>x=3-3y

=>x=3-3.1

=>x=3-3

==>x=0

vây x=0     ; y=1

trần
Xem chi tiết
tth_new
9 tháng 1 2019 lúc 10:05

\(\hept{\begin{cases}x+my=1\left(1\right)\\mx+y=1\left(2\right)\end{cases}}\Leftrightarrow x\left(m+1\right)+y\left(m+1\right)=2\) (cộng theo vế (1) và (2) ; tách nhân tử chung)

\(\Leftrightarrow\left(x+y\right)\left(m+1\right)=2\) (3)

Để hệ có nghiệm duy nhất thì x = y = t

Thay vào (3) \(2a\left(m+1\right)=2\Leftrightarrow a\left(m+1\right)=1\)

Mà x,y > 0 nên a = x + y > 0

Suy ra \(\hept{\begin{cases}a>0\\m+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y>0\\m>-1\end{cases}}\)

Vậy với m > -1 thì phương trình có nghiệm duy nhất: x,y > 0 (không chắc)

trần
9 tháng 1 2019 lúc 10:10

thấy bài này bn giải sai sai

Nguyễn Linh Chi
9 tháng 1 2019 lúc 10:26

x+my=1

=> x=1-my

Thế vào phương trình thứ 2:

 \(m\left(1-my\right)+y=1\Leftrightarrow\left(1-m^2\right)y=1-m\)(1)

+) \(1-m^2=0\Leftrightarrow m=\pm1\)

Với m=-1, phương trình (1) trở thành: o.y=2 (vô nghiệm)

Với m=1, phương trình (1) trở thành: 0.y=0 phương trình có nghiệm với mọi y

+) \(m\ne\pm1\)

phương trình (1) có nghiệm duy nhất: \(y=\frac{1}{1+m}\Rightarrow x=1-m.\frac{1}{1+m}=\frac{1}{1+m}\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x, y>0

khi đó: \(\hept{\begin{cases}1+m>0\\m\ne\pm1\end{cases}\Leftrightarrow\hept{\begin{cases}m>-1\\m\ne1\end{cases}}}\) 

Phạm Lan Anh
Xem chi tiết
phạm ngọc hà
Xem chi tiết
Anh Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 21:25

a: Vì m/1<>-m/1

neen hệ luôn có nghiệm

b: mx-y=2 và x+my=3

=>y=mx-2 và x+m(mx-2)=3

=>y=mx-2 và x(1+m^2)=5

=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1

x>0; y>0

=>5>0 và -2m^2+5m-2>0

=>2m^2-5m+2<0

=>2m^2-4m-m+2<0

=>(m-2)(2m-1)<0

=>1/2<m<2

Huy Jenify
Xem chi tiết
Jocelyn Grace :3
Xem chi tiết