\(\left\{{}\begin{matrix}x+my=4\left(1\right)\\mx-y=3\left(2\right)\end{matrix}\right.\)
Từ (1)\(\Rightarrow x=4-my\) thế vào (2) có:
\(m\left(4-my\right)-y=3\)
\(\Leftrightarrow4m-m^2y-y=3\)
\(\Leftrightarrow y=\frac{4m-3}{m^2+1}\Rightarrow x=4-\frac{m\left(4m-3\right)}{m^2+1}=\frac{4+3m}{m^2+1}\)
Để \(x,y>0\Leftrightarrow\left\{{}\begin{matrix}4m-3>0\\4+3m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\frac{3}{4}\\m>\frac{-4}{3}\end{matrix}\right.\Leftrightarrow m>\frac{3}{4}\) (vì m2+1>0 nên chỉ xét tử >0)