\(\sqrt{x}+\sqrt{1-x}=1\)
\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{2}{2\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\)
=\(\frac{\left(x+1\right).\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x-2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x+2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+4x+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(x+4\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
LƯU Ý: CAP NÀY CHỈ LÀ CAP NHÁP
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{2}{\sqrt{x}-1}\)
= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)=\(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}.\)
=\(\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)-\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x+1}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\frac{x+1}{\sqrt{x}}\)
=\(\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\right):\sqrt{x}+1\)
=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}:\sqrt{x}+1\)
=\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}.\frac{1}{\sqrt{x}+1}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}\)
ĐÁP ÁN ĐÚNG KO???
\(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}\right)^3-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}\right)^3+1}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)+\left(x+1\right)}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
Để xem nào ...
Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
ĐKXĐ : x > 0 ; x khác 1
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
RG: B = [\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) - \(\dfrac{\sqrt{x}}{1-x}\) ] : [ \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\) ] ; ĐKXĐ: x ≥ 0
\(B=\dfrac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{x-1}:\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}+\sqrt{x}}{x-1}\cdot\dfrac{x-1}{x+2\sqrt{x}+1-x+2\sqrt{x}-1}\)
\(=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}\)
\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left[\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)
\(B=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(B=\dfrac{x+2\sqrt{x}+\sqrt{x}+1+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(B=\dfrac{2x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)
\(B=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}\)
(\(1+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)) : (\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\)) - \(\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\)
\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\times\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
rút gọn biểu thức
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}
\)
\(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
\(\left(1-\dfrac{4}{\sqrt{x}-1}+\dfrac{1}{x-1}\right):\left(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
TÌM ĐKXĐ VÀ RÚT GỌN
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=-\dfrac{5\sqrt{x}-2}{\sqrt{x}+3}\)
\(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\) (ĐK: \(x\ge0\))
\(=\dfrac{\left(\sqrt{x}\right)^3+1^3}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=x-\sqrt{x}+1\)
______________
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) (ĐK: \(x\ge0;x\ne9\))
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
Câu 1
A=(\(\dfrac{1}{1-\sqrt{x}}\)+\(\dfrac{x+2}{x\sqrt{x}-1}\)+\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)):\(\dfrac{\sqrt{x}-1}{5}\)
Câu2
A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}\)-\(\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)):\(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\) (vơi x>0,x≠1)
câu3
L=(\(\dfrac{\sqrt{a}-2}{a-1}\)-\(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}\)).(1+\(\dfrac{1}{\sqrt{a}}\)) (với a>0,a≠1)
mong các cao nhân giải giúp✿
giải các bước chi tiết ạ
cảm ơn mọi người nhiều
Câu 3:
\(L=\left(\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)^2\cdot\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\dfrac{a-\sqrt{a}-2-\left(a+\sqrt{a}-2\right)}{a-1}\cdot\dfrac{1}{\sqrt{a}}=\dfrac{-2}{a-1}\)