Cho Parabol (P): \(y=\frac{x^2}{3}\) và đường thẳng (d) đi qua M(1; 12) với hệ số góc k. Tìm k biết đường thẳng (d) cắt (P) tại hai điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) thỏa mãn \(\frac{y_2}{x_1}+\frac{y_1}{x_2}\)
1. Cho đường thẳng (d):y=2mx+2m-3 và Parabol (P):y=x\(^2\)
a) Tìm m để đường thẳng (d) đi qua A(1;5)
b) Tìm m để đường thẳng (d) tiếp xúc với Parabol (P)
a: Thay x=1 và y=5 vào (d), ta được:
2m+2m-3=5
=>4m-3=5
hay m=2
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx-2m+3=0\)
Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)
=>m=-3 hoặc m=1
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
Trong mặt phẳng Oxy cho đường thẳng (d): y=x-m+1 và Parabol (P) y=x2
1. Tìm m để (d) đi qua A(0;1)
2. Tìm m để đường thẳng (d) cắt (P) tại 2 điểm có hoành độ x1 và x2 sao cho:
\(4\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0\)
Cho parabol (P): y = x2 và đường thẳng (d): y = x+2.Tìm m để (P),(d) và đường thẳng (\(\Delta\)): y = (2m - 3)x - 1 cùng đi qua 1 điểm có hoành độ lớn hơn 1
De (P),(d),\(\left(\Delta\right)\),cung giao nhau tai mot diem co hoanh do lon hon mot thi x>1
Hoanh do giao diem la nghiem cua phuong trinh:
x2=x+2 \(\Leftrightarrow\)x2-x-2=0
\(\Delta\)=9
x1=2(tm)
x2=-1(loai)
thay x=2 vao y=x2 ta co: y=(2)2=4
thay x=2,y=4 vao \(\left(\Delta\right):y=\left(2m-3\right)x-1\)
4=(2m-3)2 -1
\(\Leftrightarrow4=4m-7\)
\(\Leftrightarrow m=\frac{11}{4}\)
vay m=11/4 thi (P),(d),\(\left(\Delta\right)\)cung giao nhau tai mot diem co hoanh do >1
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Để d đi qua A
\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)
Phương trình hoành độ giao điểm (P) và d:
\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)
- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)
Tọa độ tiếp điểm là \(\left(0;0\right)\)
- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)
Tọa độ tiếp điểm là \(\left(2;2\right)\)
trên mặt phẳng tọa độ Oxy cho parabol y=x^2 (P) và đường thẳng y=mx+3-m .
a)chứng minh đường thẳng d luôn đi qua điểm M(1,3)
b)tìm m đề đường thẳng (d)cắt parabol tại hai điểm phân biệt nằm về 2 phía của điểm M
a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3
Cho đường thẳng (d): y=2mx+2m-3 và Parabol (P) y=x2.
a) Tìm m để đường thẳng (d) đi qua điểm A(1;5)
b) Tìm m để đường thẳng d tiếp xúc với Parabol (P)
(Phú Thọ 2021-2022)
a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)
<=> \(5=4m-3\Leftrightarrow m=2\)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-2m+3=0\)
\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)
Để (P) tiếp xúc (d) thì pt có nghiệm kép khi
\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n.
Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Cho parabol (P): \(y=\frac{-1}{4}x^2\)và đường thẳng (d): y=(m+1)x+m^2+3(m là tham số).Tìm tất cả các giá trị của m để đường thẳng (d) và parabol (P) không có điểm chung
Phương trình hoành độ giao điểm của (P) với (d):
\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)
\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)
\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)
\(=4m^2+8m+4-4m^2-12\)
\(=8m-8\)
(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.
\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)
\(\Leftrightarrow m< 1\)
Phương trình hoành độ giao điểm của (p) và (d) là
\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)
\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)
\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)
\(=m^2+2m+1-m^2-3=2m-2\)
(p) và (d) không có điểm chung <=> \(\Delta< 0\)
<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)
Vậy với \(m< 1\)thì (p) và (d) không có điểm chung